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Abstract 

The water sector is in the process of suffering from the stress induced by the climate change that is 

occurring worldwide. An otherwise constant supply of water is now changing its patterns, in terms of 

frequency and intensity, with an increase in the drought season tendency, meaning that is imperative 

to deal more carefully with the existing water resources. 

In the same line of thought, to reduce the unnecessary losses of water it is required to control them in 

the water supply networks worldwide. The current scenario has 35% predicted loss of water on average, 

from a global point of view. To control these losses, the common approach is to reduce the pressure 

present in the network since excess pressure induces more water losses in the system. Pressure 

Reducing Valves (PRVs) are commonly used to maintain the acceptable pressure levels in networks. 

Although these systems are highly effective in managing pressures, it is counter intuitive that the energy 

dissipated by the PRVs is not recovered. 

The use of Pump-as-Turbines (PATs) as an energy recovery system to control the pressure in the 

supply network can be a feasible solution. Installing a system based on PATs can be an extremely 

complex problem, since there are multiple variables that influence the system behaviour. This study 

presents a new methodology and analysis that uses the concept of Genetic Algorithms to do a multi-

objective optimization of a system with multiple PATs, selecting the correct PAT model and every 

definition operating rules that will influence the system’s effectiveness. 
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Resumo 

O sector da água encontra-se progressivamente sob a ameaça das alterações climáticas no panorama 

mundial. Os recursos de água, constantes e previsíveis, estão cada vez mais vulneráveis a efeitos de 

mudança de padrões e intensidade de precipitação. Simultaneamente, existe um aumento dos 

períodos de seca, tornando imperativo que exista uma melhor gestão dos recursos existentes. 

Na mesma linha de pensamento, para reduzir os desperdícios de água é necessário controlar as 

perdas de água, que existem nas redes de abastecimento de água. No cenário mundial actual, existem 

perdas de água médias nos sistemas de abastecimento de água da ordem dos 35%. Para controlar 

estas perdas, a estratégia comum passa pela redução da pressão existente nos sistemas de 

abastecimento, dado que, existe uma correlação entre a pressão na rede e as perdas. As válvulas 

redutoras de pressão (PRV) são tipicamente usadas nas redes de abastecimento para manter os níveis 

de pressão recomendados. Apesar destes dispositivos serem muito eficientes no controlo das 

pressões, é contra intuitivo que a energia dissipada por estas válvulas não seja aproveitada para a 

geração de energia elétrica. 

O uso de bombas a funcionar como turbinas (Pumps-as-turbines, PAT), como sistema de 

aproveitamento de energia para controlar as pressões presentes numa rede de abastecimento de 

água, podem ser uma solução possível. Dimensionar um sistema baseado em PAT pode ser 

extremamente complexo, dado que existem múltiplas variáveis e relações que influenciam a solução 

final. Este estudo apresenta uma metodologia nova e análise, que utiliza o conceito de Algoritmos 

Genéticos (GA) para executar uma otimização multiobjectivo de um sistema com múltiplas PATs. Entre 

as variáveis de análise está a localização da PAT, a seleção do modelo e todas as definições que 

influenciam o funcionamento do sistema. 
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1 Introduction 

1.1 Scope 

The present master thesis focuses on the study of pressure management of water supply networks and 

the consequent exploitation of electric energy generated with the use of Pumps-as-turbines (PATs) 

installed in the system. More specifically, the investigation of the model development and optimization 

analyses result from a multi-variable and multi-objective optimization approach, with the use of genetic 

algorithms (GA), to the inherent complex problem. The objective of this optimization is to ensure a better 

use, and effectiveness, of the interventions and corresponding resources used for the goal of regulating 

pressures in the water supply network. Simultaneously, and in a more elementary way, the goal is to 

contribute to the effectiveness of the water utility system, both directly related either the conversion of 

energy that is already available and contained in a pressure system, as the indirect cost that the 

reductions of pressure and the consequent decrease in water losses create (Clarke, 2010). Worldwide 

water losses, just in the supply system, as non-revenue water (NRW), is estimated to be on average 

35%. In developing countries and regions more prone to excess pressure the values can reach 50-60% 

(Fields, 2015). 

Climate change is a great challenge for the worldwide society to deal, it is already a centre subject in 

world politics, not just as a talking point, as a main topic that is actively being tackled by the society. A 

major consequence of climate change is the drastic changes in weather patterns, and global 

temperatures that could lead to an alarming crisis of water scarcity worldwide. In this fashion it is critical 

to preserve the already available water resources. The current model of managing water resources in 

Europe is already putting extreme pressure in the natural sources of water and have multiple ecological 

impacts since damming rivers and transferring water from different river basins affect the normal 

interactions and natural way of functioning of the ecosystem. Multiple regions, especially in 

Mediterranean countries are already suffering from water scarcity, some even already use desalination 

processes to generate freshwater, like Spain, Cyprus and Malta, constantly enhancing the production 

from these methods due to the increasing water needs and decreasing in natural water availability. The 

artificial production of water comes with a high energy price, in the range of 2-2.5 kWh/m3 for the best 

Seawater Reverse Osmosis Processes (SWRO). It has a special impact as a cost since it’s a natural 

procedure that could be avoided with correct management and this ends up harming indirectly, by 

inevitably using fossil fuels as energy source, causing gas emissions that contribute to the climate 

change (Craig R & Andes, 2015). The pressure on the different type of water resources changes from 

region to region, and seasonally, not only due to the natural cycle of water and the natural abundance 

or scarcity due to the variability within seasons, but also because the type of water necessities are also 

different in every region (Agency, 2019). Multiple climate models predict an increase in intensity and 

absolute yearly quantities of precipitation in Northern Europe due to climate change and the opposite 

in Southern Europe, with less precipitation and drier summers.  (e.g. Southern Europe stresses the 

water supply both in rivers and ground water in spring and summer for agriculture purposes and 

Northern Europe stresses the surface water systems in the winter for cooling in energy generation and 
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heating). The control of water losses in supply networks is a detrimental priority to fight the water scarcity 

problem in Europe. 

The use of Pressure Reducing Valves (PRVs) to maintain the correct level of pressure in the supply 

network has been the standard technique used to mitigate the adverse problems caused by the excess 

of pressure. The installation of a PRV has the goal of ensuring the minimum pressures, customer 

satisfaction and the control of excess pressure that only contributes for more water losses in the form 

of small leaks, creates an increase in the probability of critical burst in the system that may impair the 

water supply. The control of pressures creates the indirect saving of reducing repair interventions and 

improving the life of the supply systems. The approach of using PATs working to achieve the same 

effects as a PRV has been in use for several years. The use of pumps to produce energy has the benefit 

of recovering the energy dissipated and transform it in electricity. Multiple steps were made, by autors 

such as Stepanoff (1957) , Alatorre-Frenk (1994) and Wiliams (1994) ,in the development of this 

technology have been taken, from the hydraulic analysis to predict the behaviour of a pump working in 

reverse mode, to the application of PATs in actual water supply networks and the study of economical 

and hydraulic feasibility of this type of solution, Derakhshan & Nourbakhsh (2007),  Gonçalves & Ramos 

(2008) and Chacón et al. (2019). The optimization of the position and characteristics of the PAT 

performance is an extremely complex problem to solve. In this area, several works starting with simple 

PRVs application and reaching simple PAT installations have been produced. The use of GAs has been 

progressively used to study the location of the implementation, and pressure to be removed with a PRV. 

An extension of this concept has been applied progressively in terms of complexity to a PAT solution. 

  

1.2 Objectives 

A smart management and application of resources is critical in the modern economy. The same should 

be applied to the implementation of energy recovery systems in the water supply networks. The use of 

GAs could be the answer to the multi-variable problem of implementing the best solutions in the system 

to make it the more efficient as possible. Analysing each water network and recovery system individually 

is very straight forward and with multiple studies in the subject. A smart application of the system using 

robust algorithms, such as GAs that allow for a strong adaptability to different scenarios and necessities, 

could allow for viable and better solutions.  

The purpose of this work is to study the effects of the application of a GA tool model in an integrated 

approach to the implementation of an energy recovery system, with the use of PATs. The goal is to 

apply all the variables, that influence the near future, in one compact “genetic” form. The variables used 

are power curves and H-Q characteristic curves for multiple turbine rotational speeds, implicating the 

use of electric regulation of the system conditions, at different demand patterns throughout the day. 

Although this work is focused on the application of a system in the short term, it opens the way for a 

long-term approach that could include as variable the progression of the demand pattern throughout 
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the live cycle of the system. The evolutionary capacities of the optimization will be analysed, the effects 

of the general convergence of the pareto front and the adaptation of the final solutions in terms of 

defined characteristics of a PAT regarding to the available rotational speeds. 

The work of developing the optimization based on the NSGA-II genetic algorithm (Deb et al., 2002) was 

done using MATLAB programming language. It is intended to evaluate the use of EPANET-MATLAB 

Toolkit. This toolkit creates an interface between both software’s allowing for an easier data analysis 

from the hydraulic simulations done in the EPANET model. An EPANET model for the hydraulic 

simulation must be created first, before the optimization. This model consists in a simple water system 

developed for the purpose of this work.  

To achieve the goals of the proposed research, fitness functions for each objective need to be 

established, in this case, the energy generation, the pressure regulation and the rentability of the 

system. A PAT library needs to be created with every characteristic that could influence the behaviour 

of each model at different working speeds. The demand pattern needs to be defined and imported to 

the water system. Likewise, characteristic curves have to be included in the network. 

 

1.3 Thesis Structure 

 This document is comprised of 6 different main chapters: 1) Introduction (detailed previously); 2) 

Pressure regulation in water networks; 3) Genetic algorithms; 4) Methodology; 5) Case study; 6) 

Conclusion. 

The pressure regulation methods and a presentation of the general behaviour of the solutions that are 

generally applied, such as pressure reducing valves are included in Chapter 2. An introduction to PAT 

technology is also included, with different control methods and the evolution of studies regarding the 

conversion from pump characteristics to turbine characteristics, from the analytical methods to the more 

recent improvements in Computer Fluid Dynamics (CFDs). The introduction to the turbomachine affinity 

laws, essential in the characterisation of the behaviour of turbines in different conditions is also detailed. 

In Chapter 3 the evolution of Genetic Algorithms is presented and the correlation to the solving of 

hydraulic related problems. A general introduction to different components that take part in the cycle of 

a GA and their most common variances are explained. The context and importance of the Pareto Front 

concept is related to the corresponding application in the hydraulic optimization problems.  

Chapter 4 presents the methodology of the optimization used in this research. In the chapter, are also 

presented the relevant tools, software and element used. For each fitness function is detailed the 

process and the source of the results. The constraints and limits of the solution space are also defined. 
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The case study is detailed in Chapter 5. The characteristics of the hydraulic network on which the 

optimization process is run with are also presented. The same is done for the hydraulic analysis 

characteristics and times. The process and justification for the daily demand pattern used is also 

detailed in this chapter. The actual PAT library characteristic curves are defined, and the complete 

methodology used for the integral optimization is presented. 

The last, Chapter 6, concludes the results of the approach developed and suggest future improvements 

to this research. 
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2 Pressure regulation in Water Supply Networks 

2.1 PRVs for pressure and leakage control 

There is a direct correlation between excessive pressure and water losses due to leakage in a water 

network. Therefore, a good pressure management is essential to regulate water losses (Clarke, 2010). 

Due to the later reduced corrective interventions expenses, such as fixing pipe bursts in the network, 

the better customer service by the water supply companies, and the savings in energy used in pumping 

and water treatment make this type of water losses management one of the most economical ones 

(Girard & Stewart, 2007). Pressure reducing valves (PRVs) are generally used to control the pressure 

by separating the system in district meter areas (DMA) that maintain a certain pressure range inside. 

The separation into DMAs allows for a faster detection of water leakages, better monitoring, and 

enhanced precision of the recovered data by reducing the complexity of the network to analyse. Llicic 

& Kovac (2009) concluded, after a 4-year project studying a DMA in Zagreb, Croatia, and the same 

DMA with pressure regulation that there was a reduction of 40% in major pipe bursts within the DMA. 

PRVs control downstream pressure to a predetermined definition, this way the downstream pressure 

remains stable independently of the conditions, and its inherent fluctuations, upstream of the valve. To 

maintain a variable headloss, that is dependent on the system downstream pressure, a lock is actuated 

varying its level of actuation according to the necessary local head loss needed. There are multiple 

types of PRVs, spring, piston, and diaphragm (Ramos et al., 2005).  

 There are four main different types of operation condition for the valves: 

• Constant downstream pressure. 

• Constant head loss. 

• Constant downstream pressure but with variability in time (mostly used with 2 times for high 

demand and low demand hours). 

• Constant downstream pressure directly variable according to demand. 

 

Figure 1 - Operation conditions of PRVs (Araujo et.al 2005). 

In each different type of operating condition, the valve can be in different states: Active estate -  Means 

the downstream pressure is higher than the reference and the valve is activated to induce a local head 
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loss; Passive state -The pressure upstream is equal to the pressure downstream of the valve, meaning 

that in this case the valve is completely open; Closed state - The pressure downstream of the valve is 

higher than the pressure upstream, the valve is completely closed, working as a one-way valve. 

Extensive research has been done in the incorporation of GAs within the optimization process of 

selecting the position and definitions of PRVs applied to a water system. Initial studies started with the 

use of simple GAs to predict the optimal locations of valves in the water systems, with the objective of 

minimising water leakage (Reis, Porto, & Chaudhry, 1997).  

Later, Araujo .et al (2005) further improved the optimization of the valve locations. In this case, the work 

was comprised of two GAs based optimizations, the first improved the position of the valves by changing 

the roughness of each pipe as variable, this way a local headloss is simulated. In the locations chosen 

for PRV implementation, which were the pipes with higher induced headloss, a second optimization 

takes place adjusting the actual headloss to be applied by the valves. 

 

2.2 Pump as turbine (PAT) for energy recovery and pressure management 

PRVs induce a local dissipation of energy in the water supply network. This dissipated energy could be 

harvested with the aid of hydropower devices that allow for energy production while at the same time 

the pressure requirements are achieved. Contrary to traditional hydropower generation in rivers or other 

natural water sources, the flow characteristics in a water supply system are hard to predict and are very 

unstable, affected by multiple seasonality’s in a daily, monthly, and yearly basis. To add more barriers 

to an already complex problem is essential to maintain the original purpose of the system of offering a 

reliable water delivery, of maintaining minimum and maximum pressures, of maintaining water quality 

and keeping with the required demand all the time (Fontana et al., 2012). 

Typically, small hydropower generation relied in small scale variants of the traditional turbomachines, 

such as Pelton, Francis, and Kaplan. These alternatives require big initial investments and despite 

offering high efficiencies they require long payback periods to have economic viability. For this reason, 

a route towards simpler turbines was taken and, in the same way, the consideration of a pump working 

as turbine was seen as a simple, but robust, alternative. PATs are extremely simple machines that are 

readily available worldwide, that can offer low maintenance costs and a fast payback period of around 

two years or even less (Derakhshan & Nourbakhsh, 2007). Gonçalves & Ramos (2008), on an 

implementation proposal for a PAT pressure management and energy recovery system in Aveiro, 

Portugal, have achieved pay-back periods of 7 and 8 years. Perdigão (2018) made a similar 

assessment of the most adequate PAT system to replace PRVs in the water distribution network (WDN) 

of Funchal, Portugal and concluded that there was a high variability of pay-back periods depending on 

the different methods of energy output connections. In this case, grid, local and battery connection were 

analysed and in the same order payback periods of roughly 5, 3 and more than 16 years were achieved. 

By comparing the reduced efficiencies of PATs with their traditional counterparts, and taking also into 
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consideration the reduced investment, it is possible to assume that this system can be an important 

alternative for energy generation (Chacón et al., 2019). 

Motwani et al. (2013) proceeded with a cost analysis of a PAT implementation in a rural area. The 

authors compared a Francis turbine implementation with the PAT. They were able to make the 

conclusion, that in the reality of the study the PAT solution presented a smaller annual life cycle cost 

(ALCC), achieving, respectively for Francis and PAT, a cost per unit of energy produced of 6.08 and 

5.07. 

Puleo et al. (2014) studied the application of PAT in WDNs, the conclusion from the investigation is that 

PAT application inside the DMAs can be inefficient and unable to comply with the objective of recovering 

energy. The authors suggest that is more advisable to apply PATs directly downstream of the DMA 

entrance and in the main supply connections. The instability of local demands could compromise the 

system. In the other hand, Fontana et al. (2012) studied the application of a PAT pressure control 

system in the DMA and concluded that the solution showed “that a relatively large energy recovery 

could be coupled to a significant reduction in water loss”. 

An obstacle to correctly implement pumps working in reverse mode, is the lack of data of each pump 

working in those conditions. The curves are generally not provided by the manufactures. This created 

a demand in the investigation of different methods to determine the curves of the pumps working in 

reverse from the original pump curves (Derakhshan & Nourbakhsh, 2007).  In the late century, many 

authors worked to achieve good predictions in turbine behaviour, Williams (1994) illustrated how a lack 

of precision in this procedure can have major consequences in the viability of the PAT implementation. 

The same author compared multiple analytical prediction methods developed, defined ranges of error 

acceptance, and applied the methods on 35 pumps. The methods tested included, in example, 

Stepanoff (1957) and Alatorre-Frenk (1994). The variability of results was clear, being the Sharma’s 

(1985) method the one with the smallest error. The method got, nevertheless, 20% of the pumps 

analysed with results out of the desired range.  The multiple methods referred in the study used the 

pump efficiency to achieve the turbine H-Q characteristic curves and, in the case of Sharma’s method, 

the relation between specific speeds developed by Engel to define the relations between characteristics 

in pump and turbine modes (Williams, 1994). 

Derakhshan & Nourbakhsh (2007) developed a prediction method to determine the Best Efficiency Point 

(BEP) for low specific speed centrifugal pumps. Simultaneously, concluded that centrifugal pumps can 

appropriately run in multiple rotational speeds, heads, and flow rates and that the efficiencies are very 

similar in pump and turbine modes. For the same specific speed, a pump with higher efficiency works 

at higher H and Q than the less efficient counterpart.  

Singh & Nestmann (2009) further investigated prediction methods for PAT performance. Created a 

model to optimize the prediction of performance characteristics based on multiple experiments of other 

pumps working in reversed mode and the classical principles of turbomachines. The model presents 
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an exceptional precision in most characteristic curves. A further improvement in the data base of the 

model would improve the precision of the predictions.  

 

2.3 Computational fluid dynamics (CFD)  

With the same goal of improving the prediction methods of the characteristics that define the behaviour 

of pumps working in reverse mode, many studies, and progress, has been made by using computers 

to simulate the behaviour of turbomachines in a virtual system. The system is defined and solved by 

mathematical systems that replicate the boundaries and fluid behaviour. Models of the machines are 

constructed by a 3-D grid software as the one represented in Figure 2. The model and the fluid are 

represented by the 3-D mesh, the higher the quality of the mesh and higher the number of cells that 

make the grid, the higher are the quality of results. A constant balance between grid density and 

efficiency in the simulation processing must be achieved (Frosina, Buono, & Senatore, 2017). A 

performance improvement in the approaches to predict turbomachine behaviour with CFD could allow 

for a fast and realistic simulation of different turbomachines operating in different environments with a 

very high precision.  

Taking into consideration the variability in the quality of simulations, Carravetta et al. (2012) concluded 

that CFD predictions are an “valid alternative to experiments” that aim to determine the pump reverse 

curves in the absence of a characterization in reverse working condition by the manufacture. Nautiyal 

et al. (2010) also used a CFD software to achieve the characteristics of a PAT, the conclusion of the 

study was that this type of technique can be a very effective tool. The authors report small errors in the 

prediction and suspect that an improvement in the grid model definition can solve the errors. 

Nevertheless, the authors consider that “more experience in computational analysis will also help to 

obtain accurate convergence of CFD”. Frosina et al. (2017) validated a CFD model of three pumps with 

the normal operating mode and then simulated the same computer models in reverse conditions of flow. 

The results were compared with the previous analytical methods used to predict reverse behaviour. It 

was found that the CFD results are in accord to the more precise analytical methods, like Sharma’s and 

Stepanoff’s. CFD is a vital part in the conception and development of new solutions, offering better 

solutions adapted to more diverse scenarios (Simão, 2009). 

On the other hand, Derakhshan & Nourbakhsh (2008) concluded after a comparison between 

experimental results of a PAT characteristics and the ones obtained in a computational model that the 

results are already viable in pumping mode, but in turbine mode there is still a considerable difference 

in results, the authors point out that in turbine mode a higher sensibility to the model grid complexity 

must exist. Fontanella et al. (2020) worked in an analytical method that compiled many existing PAT 

curves to calibrate the analytical model by considering that the errors associated to the early methods 

were caused by the small database from which they were extrapolated. The authors consider that CFD 

methods create additional difficulties, due to the validity of mathematical models and the approach used. 
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Figure 2 - Example of 3-D mesh used in CFD simulations and the pressure diagram. 

 

2.4 Variable Operating Strategy (VOS) 

Traditional hydropower installations have very strict operating conditions, the fluctuations are small, 

there is no daily variance of great impact in the conditions, being possible to exist seasonal changes 

that in some extent are also easily predictable. When applying energy recovery systems in WDNs, there 

are a multitude of variable operating conditions, in this case, with hourly, daily, and yearly variance that 

influence the system project and viability. If a PAT was to be installed in a water supply system for a 

steady state and constant conditions, like in major hydropower facilities, it would likely have during its 

lifecycle various moments where it would be off the minimum desirable operating conditions for which 

it was design.  

Carravetta et al. (2012) proposed a procedure, named variable operating strategy (VOS), for the 

election of the most appropriate system. The authors based this method in a preliminary use of the 

electric generation plant overall efficiency. This efficiency takes into consideration the energy recovered 

by a PAT for each hydraulic analysis time interval and respective operation point of the turbomachine 

and correspondent hydraulic conditions offered by the network. 

The proposed strategy (VOS) starts with an investigation of the available conditions, respective 

available head and flow rates and the type of turbomachine selection. For a wide set of characteristic 

curves, the plant overall efficiency is calculated. Based on the results of efficiency, the best set of curves 

is selected, and a near-optimal real curve is selected from actual turbines in the market. The same 

procedure is repeated with the real curve to have a true, and final, evaluation of the operating 

performance. As previously said, the authors consider that this procedure with the use of CFD curves 

provides a great alternative to experimental curves since the method focus initially on a selection phase 

and the results provide accurate solutions.  
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Carravetta et al. (2012) proposed a method of regulation to achieve better efficiency from the overall 

system, the Hydraulic Regulation (HR). HR is proposed to have the PAT running at optimal conditions 

without being dependent on the natural PAT behaviour and to allow for an adequate water supply. 

(Figure 3). HR works by regulating the flow that enters the PAT with the use of a bypass regulating 

valve. The flow and head conditions are adapted to the PAT. If a discharge reduction is needed to 

achieve the ideal PAT working characteristics the valve opens, creating a reduction in the flow that goes 

throw the main pipe and actual PAT and instead runs through the above-mentioned Bypass. A similar 

procedure is done to achieve the ideal head for the optimal PAT performance. A PRV installed in series 

upstream of the PAT induces the necessary head drop to achieve the desired conditions.  

 

Figure 3 - Hydraulic Regulation, effects of the regulation system (Carravetta et al., 2012) 

 

Carravetta et al. (2013) extended their studies on regulating PAT operations in variable conditions by 

exploring Electrical Regulated (ER) systems and comparing them with HR systems. In this method the 

PAT working conditions are adapted to the flow and head that exists in the system to optimize the 

energy production without any other mechanical controller. The behaviour of the turbomachine depends 

on the rotational speed it is working on, by changing the frequency on which the generator in producing 

electricity, due to the way it produces electricity by the rotating magnetic field induced inside by the 

magnetic poles, it is possible to change the turbomachine speed. When the frequency changes, with 

the use of an inverter between the generator and the corresponding output connection, the rotation of 

the PAT changes. The different rotational speed produces modifications in the characteristic curve of 

the equipment. Higher frequency produces higher rotational speed. The opposite conclusion can be 

made in opposite conditions. When the rotational speed is higher, the head drop created by the PAT is 

also higher, with smaller flows. When the rotational speed is lower, a higher flow goes through the 

system with corresponding smaller head drop induced in the system. A generic example of such 

variation is rotational speeds and their respective effects in the characteristic are shown in Figure 4.  
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Figure 4 - ER, and the corresponding characteristic curves changes (Carravetta et al., 2013) 

In this regulation method, information regarding PAT performance at different rotational speed and its 

efficiency curves are essential. It is possible to obtain the different characteristic curve by the three 

different methods explained above, by CFD, by experimental results and from one-dimension prediction 

approaches. Different rotational speed curves and their respective behaviour regarding efficiency also 

need to be defined, for this it is possible to use the turbomachine affinity laws to provide different curves 

for different rotational speeds. The process used to define the curves is described in the correspondent 

chapter.  

An intermediate approach to both previous regulation schemes is the Hydraulic Electrical Regulation 

(HER). This method uses both regulation systems interconnected to gain even further adaptability. It 

has the option of using the mechanical valves for regulation and the electrical regulation using the 

inverter to achieve optimum performance in multiple scenarios.  

 

Figure 5 – HER and its mutual adaptation of flow and PAT characteristics (Carravetta et al., 2018). 

It is the most effective system, but only suitable for high power installations that produce enough energy 

to support the double investment, in the inverter and valves, and yet have the ability to be profitable. 

Like previously demonstrated for the other methods, Figure 5 shows simultaneous adaptation of flow 

characteristics and PAT characteristics. 
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The same authors explored a different regulating method, the single-serial-parallel regulation (SSP). To 

eliminate the need of expensive additional equipment’s, such as PRVs, inverters and control boxes, a 

simplified system that offers three different operation modes was proposed (Carravetta et al., 2018) 

The installation diagram and corresponding working conditions of the system are represented in Figure 

6.  

This system relies on two PATs and three control valves installed as described in Figure 6. As previously 

referred, this method offers three different operating modes (Carravetta et al., 2018):  

• Valve I on, PAT A ON, valve II and valve III OFF, PAT B OFF – single PAT. 

• Valve II and valve III ON, PAT A and PAT B ON, valve I OFF – series PATs. 

• Valve I and valve III ON, PAT A and PAT B ON, valve II OFF – parallel PATs. 

 

 

Figure 6 - (a) Diagram of installation scenario and (b) correspondent curves with the different working 

modes (Carravetta et al., 2018) 

 

2.5 Turbomachine affinity laws 

Turbomachine affinity laws are a critical element in the prediction of real scale working conditions from 

data obtained in a small-scale model. The turbine efficiency can be extrapolated from the specific speed 

of the flow going in and out (or any other equivalent points) of the turbine wheel. In the same fashion, it 

is possible to conclude that machines, identic in their geometry and specific velocities, have the same 

efficiency. 

 

H 
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Figure 7 - Specific speeds in a turbine wheel. 

The relation between peripheral velocity (C), size of the turbine and the respective rotation on which it 

is working, and the above relation between specific velocities allow for an also true relation between 

rotational speed, induced head drop and size of the turbomachine. If we consider this relation, it is 

possible to apply it to the same turbomachine running at different rotational speeds and have the 

capability to predict reliably the behaviour of, in this case, PATs at different speeds.  
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3 Genetic Algorithms 

3.1 Concept and evolution 

Genetic Algorithms (GA) are a heuristic search method developed by John Holland, colleagues and 

students at University of Michigan during the 60’s (Whitley, 1994). GAs are based on the dynamic 

system that make the theory of evolution in the natural world. They consist on the survival of the fittest 

solution and its development to become even better adapted, in this case, with the possibility of 

surpassing the original fittest solution, becoming itself the fittest. (Goldberg, 1989). This procedure 

works on every new generation of solutions. Evolution is, indeed, a method of search for the best 

solution in an infinite time frame, and the fact that the current solution is the best now, does not imply 

that it is already the optimum. The optimum and it path is an uncertainty. Evolutionary algorithms are 

very well suited to problems that require a strong capability of adaptation to continue performing 

adequately in changing environments, well suited to problems that require innovative solutions that do 

not fit the “traditional progression” of ideas. In the same way, GAs can tackle problems where the size 

of the solution space is extremely big with a high complexity of variables that do not allow for a clear 

and reasonable approach “by-hand” with enumerative methods, neither by a deterministic approach. 

(Mitchell, 1995).  

Goldberg’s describes the optimization with GAs as a two-part optimization, the first is the improvement 

of the results, the second is the achievement of the true optimal point. Goldberg’s objective with this 

separation is to empathise that GA is not, especially in scenarios with multiple solutions, a tool that aims 

directly to achieve the overall optimal point. The focus is the fast improvement of solutions. 

In the adaptation of the evolution present in the natural world to a computational system, there are three 

main groups that stand out that define the solutions and its evolutions (Holland, 1992): 

• Environment on which the system/solution is undergoing the processes of evolution. 

• Adaptive plan that allows the system/solution to actively make changes for a better adaptation 

to a changing environment. 

• A measure of the system/solution performance in the environment. 

Although all the previous points are important, the main component, is the adaptive plan. Supposing a 

constant environment, it is possible to eliminate a level of complexity. Since the context of this research 

is the application of an engineering solution, and there should not exist further adaptation of the system 

at least in the physical properties that are fixed. The adaptive plan is faced with specific obstacles in its 

design, as suggested by Holland in Adaptation in Natural and Artificial Systems: 

• The solutions to evaluate are in great number. 

• In complex problems is difficult to determine that a certain variable is the cause for good or 

bad performance of the solution.  

• The performance functions can be extremely complex. 
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• In complex problems there is a very big flow of information. From environment 

characteristics to performance evaluation.  

To find a solution, Holland suggests a robust and simple adaptive plan. The use of the chromosome 

concept is suggested to be applied as the base structure of solutions with the use of operators of 

selection, mutation, and crossover as part of the adaptive system, and thereby becoming themselves a 

fundamental part of every GA. These operators use probabilistic rules to define their action in the 

chromosomes. Although they use probability, it is important to clarify that this probabilistic transition is 

not equivalent to a flip of coins. The use of probability consists in small random choices that guide the 

search into best regions of the solution. (Goldberg, 1989) 

Each chromosome has the complete characteristics of its variables, and consequently, its complete 

solution. The elements that make the chromosomes in a population are often called “locus”, in analogy 

to the real biology counterpart, and are comprised most often by bit strings (i.e., strings of 1s and 0s) 

(Mitchell, 1995). This offers a simple and easy to process “language” that allows for a strong robustness 

of the system and its adaptive operators. Multiple solutions/characteristics of a problem can be encoded 

by this simple bit-string method. (Mitchell, 1995)  

A Genetic Algorithms is different from normal optimization methods in four ways (Goldberg, 1989): 

• Only deals with the results and the coding of the parameters of the solution, not with the 

parameters themselves. 

• Searches in simultaneous a population of points, not a single point approach. 

• Is based only on the feedback of a payoff information, defined by objective functions. Does not 

rely on other auxiliary knowledge, information, or mathematical characteristics of the solutions. 

• Relies on probabilistic transition rules, not deterministic. 

By working with multiple points simultaneously, not a point-to-point approach, there is a multiple 

optimization of various points. This means that the probability of achieving a false peak in the solution 

is reduced adding to the robustness of the solution.  

In the same manner, the lack of dependency on auxiliary information to determine the route to 

optimization makes the GA independent on how strong or relevant the additional information is. The 

lack of previous information and the blindness on which the algorithm runs, are a major benefit of this 

type of system. The blindness allows for a more robust system by not ignoring innovative solutions that, 

by definition, where not in the scope of predicted objectives and allows for a bypass on more errors 

associated with external information (Goldberg, 1989). GAs are completely driven by the feedback of 

the objective functions. 

Relying only on a probabilistic transition rule to choose the next solution point to evaluate, means that 

the likelyhood of getting a false result, for example, a local maximum, is reduced. The probability used 
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in this changes work in the same way as the lack of auxiliary information to enhance the robustness of 

the algorithm, decreasing the impact of unpredicted behaviour of the function/solution (Goldberg, 1989). 

In line with this research, there were multiple studies and progress in the use of genetic algorithms in a 

multi-objective problem. In a real world situation, the optimization of multiple characteristics is 

necessary. The solution to this problem is usually approached by creating a fitness function that 

evaluates multiple criteria simultaneously to improve the solution. The decision maker, especially in 

multi-variable problems, does not know the correct relative importance of every objective (Fonseca & 

Fleming, 1993). The use of a fitness function that combines every objective to optimize without knowing 

the exact importance of each objective would be a step back on the robustness implied by the original 

concept of Genetic Algorithms. Setting aside the concept of weighed objective function to determine 

the optimum result, the idea of Pareto-optimum and Non-dominated solution is introduced by Chankong 

& Haimes (1983) and Schaffer (1985). Multiple Pareto-optimum’s make the solutions in the pareto front. 

This front consists of every solution that cannot be considered better than any other solution in the front. 

Meaning that these solutions are not dominated by any other. The concept of domination is applied 

when a solution performs better in every objective in comparison with other solution. A Nondominated 

solution, as said before, takes part in the pareto front. This means it dominates all but one objective in 

comparison with other solution.  

This method of approach to multiple objective problems was applied by Schaffer (1985) with GAs and 

originated the Vector Evaluated Genetic Algorithms (VEGA) that was later on noted, that due to the 

selection method, that consisted in the shuffling of the available vectors, the optimization tended to 

concentrate only in one area of the search space, promoting similar solutions. In the case of a concave 

pareto front, the solutions tended to concentrate in two locations (Richardson et al., 1989). The problem 

was predicted and named speciation previously by Schaffer (1985).  

A new approach to selection needed to be created to avoid combining the objectives. A domination 

rank was created to define the pareto front in this new solution presented by Fonseca’s and Fleming’s 

called Multiple Objective Genetic Algorithms (MOGA). It explores the deficiencies of VEGA, applying a 

rank selection based on level of domination.  (Fonseca & Fleming, 1993). 

A similar approach, but with an “inverted” method of selection was developed. It defines the ranking of 

solutions looking from the other perspective, as suggested by Goldberg’s, deciding the rank by the 

nondomination of the solutions. This system, called Nondominated Sorting Genetic Algorithm (NSGA), 

is the predecessor of the algorithm used in this research, NSGA-II, and was created by Srinivas & Deb 

(1994). The same authors developed the second version to solve problems that were present:  

• High computational complexity of nondominated sorting. 

• Lack of elitism. 

• Need for specifying the sharing parameter. 
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On the initial version of the algorithm, the nondominated sorting was accomplished by comparing the 

multiple solutions and the multiple objectives. This means a total of (MN) comparisons to analyse one 

solution and (MN2) to analyse every solution for the first pareto front, being M the number of objectives 

and N the size of population. In the worst case possible, where only one solution exists per pareto front, 

the total comparisons to analyse would be (MN3). A new solution on NSGA-II called Fast Nondominated 

Sorting has a complexity of (MN2) (Deb et al., 2002). Every solution is analysed only one time, and a 

count of domination is created for every solution. When the solutions on the first front, with domination 

count (0), are taken from the population, the remaining solutions can go down in one level of domination. 

The new pareto front is now nondominated.  

In the same way, the first generation had a lack of elitism and studies showed that it was an important 

factor in the performance of evolutionary algorithms (Zitzler et al., 2000). In this manner elitism was 

inserted in the selection methodology. NSGA had the dependency on a “sharing parameter” to preserve 

diversity in the pareto-front. The main problem was the necessity to specify the parameter that goes 

against the desirable parameter-less mechanism, as said before, one of the strong points of GAs. 

 

3.2 Methodology and components 

As part of the adaptive system that characterises GAs, there are three main operators that, based on 

probabilistic results, create new population individuals. The general methodology and interaction 

between components of a GA is presented in Figure 8. There are multiple studies that explore in more 

detail the characteristics of these operators and the different approaches they should take. (Hassanat 

A. , et al., 2019) For the purpose of this research it will be introduced the general concept of each 

operator and their variances.  

 

Crossover 

Crossover operator has the purpose of combining the characteristics of two chromosomes (Parents) to 

create new ones (child/offspring) with mutual characteristics. It is a crucial component in the adaptation 

and the idealist objective is that the offspring chromosome is comprised of the best genes from both 

parents to create a better individual. Being GAs nondependent on previous knowledge and with this 

operator decision making governed by a probabilistic system, the perfect combination of the best genes 

is unlikely but as stated by Goldberg’s the route of GAs is the gradual improvement (Beasley et al.,1993) 

The Crossover probability is user defined, and multiple studies have been done to determine the best 

probability and its effects on optimization. (Hassanat A. , et al., 2019) 

Multiple methods of crossover exist, including more than two parent crossovers that are not relevant to 

this research since they are uncommon and not applied to NSGA-II (Kaya et al., 2010). A few types of 



19 
 

crossovers are: Single Point Crossover, Two Point Crossover, Multi-Point Crossover, Ring Crossover. 

It is also possible to use heuristic, arithmetic, or intermediate methods. These are more suited to GAs 

that do not work in a binary format of genes.  

 

Figure 8 - Generic diagram of GAs methodology. 

Single Point Crossover 

A single point on both parents is randomly defined. The data that is present in the genes after this point 

are swapped between chromosomes creating two new separate solutions/offspring’s (Kaya et al., 

2010). 
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Figure 9 - Single Point Crossover Diagram (Kaya et al., 2010). 

Two Point Crossover 

In two point crossover, two points are randomly selected in the parents chromosomes. A swap of the 

genetic material is made with the genes that make the stretch of genes inside the points selected. This 

type of crossover is more efficient than the single point, reason why it was used in this research (Kaya 

et al., 2010). 

 

Figure 10 - Two Point Crossover Diagram (Kaya et al., 2010). 

Ring Crossover  

The ring crossover is a method similar to the one present above, has the advantage of offering a slightly 

better variability in offspring. The procedure begins with the union of the parent’s chromosomes in a 

ring, the parents are joined at both ends. A random number decides the point in which to cut the ring 

and create the new offspring (Kaya et al., 2010). 

 

Figure 11 - Ring Crossover Diagram (Kaya et al., 2010). 
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Mutation 

 Generally, mutation occurs after the crossover operation, as presented in Figure 8. It applies random 

changes in certain genes, also randomly chosen, to create new solutions in solutions zones that may 

not have been explored (Hassanat A. , et al., 2019). This exploration of new solutions, avoids the same 

local optimum, allowing for new optimums to be discovered. Crossover by itself would converge to the 

same local optimums and get stuck in them. Mutation is crucial in maintaining diversity in the population 

(Korejo et al., 2009). 

 

Figure 12 - Mutation example in a binary chromosome (Beasley et al., 1993)  

Selection 

The selection operator, based on the rank of nondomination, defines the best set of solutions that will 

make the next population. In the case of NGSA-II, that contemplates the use of elitism, this selection 

will have the size of N/2. Half of the population, the best population, will maintain the same 

characteristics, and the other repeated half will go to the adaptive operators, crossover, and mutation. 

Before the selection phase, according with the NSGA-II method, a crowding distance is defined for 

every chromosome in each rank. The crowding distance was incorporated in the selection to enhance 

its reliability and to reduce the computation intensity. Originally, in NSGA, the preservation of diversity 

in the solution pool relied in a sharing function and the comparison between every two solutions. The 

sharing function relied in the sharing parameter that defines the largest distance within two solutions 

for sharing their fitness characteristics. The crowding distance offers every solution a value of density 

in the current front of a given solution. The total crowding distance consists in the sum of the distance 

obtained for every objective and for each objective is calculated the normalised distance, in the given 

front of solutions. Comparing them only to the corresponding neighbouring solutions in that objective. 

By avoiding a comparison between every solution and only a comparison between adjacent solutions 

in a given objective, the computational complexity is reduced and the independence from user inputs 

in the definition of the sharing parameters is obtained (Deb et al., 2002). 
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3.3 Pareto Front in Multi-Objective optimization 

In multiple objective problems, there is no unique solution. Instead, there are multiple “acceptable trade-

off optimal solutions”. This set is the Pareto front and a concept generalised by Vilfredo Pareto. The 

use of this concept as several advantages, allows for a more informed decision by the decision maker 

that has the opportunity to decide between multiple optimums according to its necessities. Single 

objective optimization leads only to one solution and ignores different trade-offs between objectives. 

Simultaneously, allows for a better understanding of the system from the developer perspective. It is 

easier to detect, in an already optimised Pareto Front, the effects and consequences of a certain input 

in the overall performance of the system (Ngarchou et al., 2005). 

 

Figure 13 – a) Pareto front bi-objective (Ngarchou et al., 2005) and b) graphical example of the dominance 

concept. 

Pareto dominance, or pareto optimality, is the characteristic that allows a solution to be part of the 

pareto set. It means that “there is no other solution that can improve at least one of the objectives 

without degradation any other objective” (Ngarchou et al., 2005). Is presented in Figure 13 a) the 

graphical representation of the pareto front in a bi-objective maximization. Another way to graphically 

visualise the domination or nondomination of a certain solution in comparison to other, is to evaluate 

the presence of any solution in the regions detailed. Solutions 2 and 3, being inside the region of 

dominance of solution 1, dominate solution 1. In the scenario of the second region detailed in Figure 13 

b) the region of dominance of solution 3, does not have any solution inside. This means solution 3 is 

nondominated by any other solution. The same conclusion is possible to be deducted from solution 2 

region of dominance.  

 

3.4 Why Genetic Algorithms? 

As stated, GAs are very efficient in dealing with high complexity problems that deal with an infinitude of 

solutions to be evaluated, and multiple variables with a complex behaviour (Mitchell, 1995). The 

optimization of a water distribution system is a multi-variable high complexity problem. The possibility 
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of combinations regarding the position of PATs alone is extremely high. When taken into account the 

available PAT models in the market, the multiple rotational speeds it can run, the multiple demand 

patterns that the system goes through every day and the projected variations in this demand during the 

life cycle predicted for the system the total of possible solutions reach a very high search domain of 

solution space. For this reason, is clear that the decision maker for a PAT implementation needs at 

least some guidance to achieve desirable results.  

Part of the problem is not only the size of the solution space but also the big interconnection between 

modifications in a network, giving the decision maker even less possibility to proceed by a rational trial 

and error method of finding the correct solution. What a decision maker knows in this kind of problems 

are the objectives it wants to achieve from the implementations. By working with the payoffs of the 

solutions, and not with the actions, GAs give the decision maker a stronger control of the 

implementation.  

In the same way, NGSA-II (and Genetic Algorithm in general) being nondependent on previous 

information, are also nondependent on information related to the relative importance of a given 

parameter of the network in comparison to another. By using multiple point analyses at the same time 

and the construction of a Pareto Front, like the ones represented in Figure 14, this kind of method allows 

a final decision, and final in-depth analysis by the decision maker.   

 

 

 

 

 

 

  
Figure 14 - 3D visualization of different pareto fronts (Ibrahim et al., 2005). 
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4 Methodology 

4.1 Hydraulic Simulation 

The hydraulic simulation of the network to be improved is performed on EPANET 2.2. It was originally 

created in 1993 as an open source software by the United Estates Environmental Protection Agency. It 

has the capability to solve the system of flow continuity and headloss equations to achieve a desired 

level of accuracy for each time step, defined by its own demands and characteristics. Originally the 

main objective of EPANET was to evaluate and better understand water quality and its behaviour 

throughout the system. Being a free software released in the public domain, it offers the possibility to 

interact with every function in the program through many programable languages with a command 

window. This enables multiple possibilities of optimization and a more automated data analyse.  

The approach used to solve hydraulic flow equations is called the “Gradient Method” developed by 

Todini & Pilati (1987) and later extended by Salgado et al. (1988). This method has the advantage of 

solving the system of equations only with the simple inputs of the network system characteristics, length 

of pipes, elevation of nodes, a simple matrix of connectivity between nodes and the roughness 

coefficient of the pipes (Simpson, 2011). EPANET 2.2 is also the chosen hydraulic solver that has 

already been widely tested during multiple years, having a very big support and documentation freely 

available as an open source (Araujo et al., 2005)  

4.2 EPANET-MATLAB Toolkit 

The capability to interact with every functionality in EPANET through multiple programming languages 

is a very strong characteristic of the solver but has the disadvantage of not being a “user friendly” 

interface requiring a high level of computation skills by the end user, developer, or student to approach 

new problems with this method (Houcque, 2005). Besides skills, takes a long time to develop and test 

the programs and needs to be very specific to the final use, although writing a program in a high-level 

computation language like C++ has inherently a high versatility, and running velocity. MATLAB, in the 

other hand, is a software package very adapted to engineering applications from the prototyping and 

researching standpoint. It has a moderate cost, is very easy to program and debug, allowing for an easy 

interface with the user and with the data recovered from the simulation (Ibrahim D. , 2010). 

To solve the stated problems and achieve a compromise between methods, EPANET-MATLAB Toolkit 

was developed as a MATLAB class function. It works as an interface between EPANET, and it has a 

skilful programming approach to interact with different optimization objectives and data analysis friendly 

MATLAB software. This solution allows to program in MATLAB language every interaction with 

EPANET networks, from modifying the network, modifying simulation characteristics and to export the 

desired results to be further analysed (Eliades et al. 2016). 
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Due to the former mentioned advantages, the program used in this research to incorporate the hydraulic 

simulation and its interaction with the genetic algorithm runs in MATLAB code and interacts with 

EPANET and the network by the interface EPANET-MATLAB toolkit. 

4.3 Objective Functions 

To select the best individuals in the solution space created by the genetic algorithm and the hydraulic 

simulation, a competition amid objectives must take place. It was chosen for this study the route of 

single-phase optimization, meaning variables defined and the corresponding impact of them in the GA 

adaptive phase is the same and executed in the same iteration. 

Many more objectives can be applied to the routines in this kind of algorithms, even conflicting ones 

(Deb, 2014). The main objectives that should be achieved from the installation of a PAT in a water 

distribution network and utilized in this study are:  

• Regulation of pressure in the network. 

• Production of electricity. 

• A fast payback period of the investment. 

An evaluation of the fitness of every solution needs to be done taking into consideration every objective 

specified.  

4.4 Fitness function – Pressure regulation 

An initial approach to the pressure regulation function was made with an extrapolation of the methods 

used in multi-objective optimization of water networks with the implementation of Pressure Reducing 

Valves (PRV) (Araujo et al., 2005). These methods need the use of a weighted fitness function to take 

into consideration the total number of valves installed. Since in a PAT application the reduction of the 

number of PAT installed is not a direct objective. Because the true objective is the payback period and 

the economic feasibility of the installation, this PAT reduction objective was discarded. In the same way, 

weighted parameters are against the principles of robustness and independency from previous 

information that the GA defends. 

For the mentioned reasons, the pressure function used was based on the Root mean square error 

(RMSE) (H. M. Awad, 2005). The RMSE is calculated between the pressure in the nodes that is given 

by the hydraulic solver in each iteration and the recommended minimum allowable pressure in the 

network or desired target pressure. In this research the target pressure remains constant during the 

simulation. The use of different requirement of pressure for different areas of the water system could 

also be applied in the GA. The pressure fitness function is presented in equation (5) 
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 𝐹. 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = [
1

𝑛
∑(ℎ𝑗 − ℎ𝑟𝑒𝑓)2

𝑛

𝑗=1

]1/2 (5) 

Where, 𝒉𝒋 is the pressure at node (j) in a given time, n in the number of nodes in the networks and  𝒉𝒓𝒆𝒇 

is the reference pressure assign for the network.  

Constraints and Limits 

RMSE has the advantages of always offering positive solutions that create a more robust system, less 

prone to errors in the sense that output values are more predictable. By multiplying the difference 

between desired pressure and the actual pressure to the square, the result provides an automatic 

valorisation of smaller errors and a natural penalization of nodes that have a very high pressure. This 

sensitivity to outliers is essential in the valorisation of the best results (Pontius et al., 2007). Constraints 

can be considered as implicit bound constraints, explicit variable constraints, and implicit system 

constraints (Zidan et al., 2017). 

The implicit system constraints are the foundation of the system solvability. The conservation of 

mass (6) and the conservation of energy (7). 

 ∑ 𝑄𝑖𝑗 − 𝐷𝑖 = 0

𝑗

 (6) 

 𝐻𝑖 − 𝐻𝑗 = ℎ𝑖𝑗 (7) 

• 𝑄𝑖𝑗 is the flow in every connection to each node;  

• 𝐷𝑖 is the demand in each node; 

• 𝐻𝑖,𝑗  is the head in the respective nodes connected by a pipe; 

• ℎ𝑖𝑗 is the loss coefficient in the connection pipe; 

 

The explicit variable constraints are related to the PAT data base and respective speeds. A library 

of 7 different PATs was used in this research as variable to the system optimization and 8 different 

rotational speeds for each PAT were used. In total, 56 different operation H-Q characteristic curves 

were provided for the optimization of water system. 

The implicit bound constraints composed of restrictions applied by the user for the behaviour of the 

water network. They include possible velocity and pressure limits. The only ones applied in this research 

were pressure constraints. To simplify, the use of the positive values of RMSE was utilized. When a 
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pressure limit, in the down and upper limits was achieved a penalization was applied to the overall 

fitness value of the system. The values were multiplied by a constant of penalization to be removed 

from the region of pareto. If the low pressure limit is achieved by a solution, the penalization excludes 

this solution with a high multiplier, meaning that for low pressures there is no tolerance by crossing the 

limit in the search space. This was applied because low pressure is even less desirable than the high 

pressure because it eliminates completely the system propose of supplying water. 

4.5 Fitness Function – Cost/Payback 

On its own, energy production from a PAT should be viewed, at least from one perspective, as business 

like solar farming, micro-hydro generation or other decentralised form of energy production. Having 

rentability is a crucial step to be implemented and explored. It should not be viewed only as an 

alternative to PRVs that as the possibility to generate some extra income over the years. PAT recovery 

systems in water networks can have the possibility of being a productive investment that, besides 

regulating the water network, can stimulate investors outside the water supply companies to invest in 

these solutions. 

A function of cost alone, and its minimization, would not be representative of the rentability of the project 

since higher cost could be offering a higher production of energy. The same situation occurs with the 

minimization of PAT installations, as already been done when applying GAs to PRVs systems.  

For this research, to have comparison between solutions, a cost per kW of energy produced was 

calculated for the fitness function. The decision to use cost per energy produced was made because it 

is conservative and above all accomplishes the comparison aspect of the pareto solutions and the 

absolute values in this situation were not taken as a priority. The cost function was imported from Novara 

et al. (2019), where the authors compiled the cost of 301 Radial and 42 Vertical Multistage pumps/PAT 

with a high variation of Best Efficiency Points (BEP) and working conditions. A similar compilation was 

made with more than 286 asynchronous induction generators, with one, two and three pairs of magnetic 

poles that correspond to 3000, 1500 and 1000 revolution per minute respectively to run at an electrical 

frequency of 50-Hz. With the decrease of nominal speed there is an increase in cost of the generator, 

with special emphasis when is required to step up to 3 pairs of magnetic poles. The data was recovered 

from the chart in Figure 15.  

A function of cost was broken into two regions: (i) from 0kW to 1kW; (ii) for > 1kW. Multiple points were 

introduced in an Excel chatter plot, and reasonable function, similar to the behaviour of the scatter plot 

in Figure 15 was defined. For the first region, a third-degree polynomial function was very similar to the 

behaviour and in the second region it was more suited an exponential function. Both were introduced 

in MATLAB as Fitness function. 
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Figure 15 - Comparison of Cost/kW from multiple manufactures (Novara et al., 2019) 

For region (i) from 0 kW to 1 kW: 

 𝐶𝑜𝑠𝑡 (
€

𝑘𝑊
) =  −17512𝑃3  +  38193𝑃2  −  28846𝑃 +  9448,3 (8) 

 

For region (ii) from 1kW to 100kW: 

 
𝐶𝑜𝑠𝑡 (

€

𝑘𝑊
) =  1498,4𝑃−0.686 (9) 

 

4.6 Fitness Function – Energy Production 

The last fitness function measures the accumulated electric power produced in the network. During the 

procedure, later described in PAT characteristic curves, the power curve from each PAT, Figure 16, at 

the correspondent velocity was incorporated in the input data received by the GA in the optimisation 

process. The curves were imported using a matrix format. The number of points that define the curves 

is similar to the ones defining the characteristic curves of each PAT, with 7 points in the relevant curve 

with extra points in the penalization/neutral region as demonstrated later in Figure 20.  

To recover the hydraulic power removed from the system in each PAT, the fitness function uses the 

power curve data that is already incorporated in the GA library. After locating the correct curves of the 
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PAT model and rotational speed for a given time step, the fitness function defines the generated power 

by interpolating the PAT flow that came from the hydraulic simulation with the values on the power 

curve.  

 

Figure 16 - Power curves for multiple specific speeds of Etanorm 65-160. 
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5 Case study  

5.1 Preliminary approach 

In this research, it is developed an approach for the use of a GA in a multi-objective problem to the 

implementation of a PAT solution to control the excess of pressure and the use of the recovered flow 

energy to create electric energy. It was used the developed EPANET-MATLAB, to create a software in 

MATLAB language to interact and process the data provided from the hydraulic simulations in EPANET. 

The language was chosen due to the already familiarity and the presence in engineering applications, 

being a great prototyping language very user friendly to decode errors, process data and visualise 

results with the possibility to use the EPANET-MATLAB toolkit. It was created an example of a water 

supply system to simulate the concept and plausibility in a reduced and controlled environment. Multiple 

PATs were analysed and compiled into a data library to be used by the GA. 

 

Figure 17 - Section of Funchal water distribution network in an EPANET model. 

The first attempts to apply the algorithm used in this research were done in a stretch of a water 

distribution network from a real life scenario in Funchal, Portugal, as displayed in Figure 17. 

Immediately, it was clear that the method used, that consists in the hydraulic solver used and its 

interface with MATLAB programming language, does not allow for quick enough speed in the resolution 

of big networks, even in this hypothetical scenario it would be impractical. Depending on the 

computational processing speed, that inherently fluctuates, a complete genetic algorithm routine with 

200 generations would take years to run in a big and complex network. It is important to reiterate that 

the lack of speed in dealing with complex networks is because the MATLAB-EPANET toolkit applies 

the changes in a network file and does not work directly with the solving of the hydraulic matrix. The 

smaller the network, the faster the functions in MATLAB can change the network characteristics to 

simulate the new proposed solution/chromosome and obtain the fitness results. The inverse applies to 



32 
 

the big water networks on which the MATLAB functions are slow to change the water network 

characteristics. In the same way, originally the simulation had a duration of 24 hours to simulate the 

variability of demands and changes in daily operating conditions. Generic Purpose Valves (GPV) are 

the elements that allow to simulate a turbine behaviour in EPANET. These valves have the exception, 

within the rest of EPANET accepted elements, of not allowing simple controls to automatically change 

its definitions during the simulation, only from OPEN to COSED, or vice-versa. This incapability adds a 

level of processing time since that, for every hour, is needed a “new network”.  

For these reasons, a different route had to be taken to accomplish the desired, at least conceptual, 

objectives. The simpler example network was used, and the duration of the hydraulic simulation is now 

only 4 hours. The variability of demand conditions is also applied in the 4 hours period.  

5.2 Hydraulic Network 

The supply network created aimed for a system with variable flow conditions and excess pressure. It 

was design in the EPANET workspace consisting initially in 20 links connected to a reservoir on top of 

a hill. Three different district metered areas (DMA) existed in the network with every node and link inside 

each DMA at the same elevation. The DMAs selected in Figure 18 were supressed from the optimization 

because the flow conditions would not create suitable conditions for a PAT application. The 

correspondent demand was transferred to the node in the main supply system. The optimal region for 

a PAT application has therefore 10 links where a PAT may be installed by the optimization algorithm. 

The head created by the reservoir (node 1) is 200 m and the following ones downstream go from node 

1 to node 10. The general representation of the network is below in Figure 18. 

 

Figure 18 - Representation of the components and general structure of the network. 
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To achieve excess pressure in the network by elevation changes a vertical step between nodes was 

created with increments of 20m. The profile of the supply network is shown in Figure 19. This way 

excess pressure is ensured. To maintain pressure, and create a more controllable scenario, the 

diameter of the pipes throughout the water network was maintained in the predefined EPANET 300mm. 

 

Figure 19 . Profile of the supply network. 

The Hazen-Williams formula was used to define the headloss as function of the flow in each pipe. For 

the correspondent roughness coefficient, an average value of 100, similar to steel pipe characteristics, 

was used. The connections have the length as detailed in Figure 19. For every node, a base demand 

was defined. For this research, the demands were chosen to be generally compatible with the available 

PAT library. In Table 1, the demand and the elevation for each node are presented. 

Table 1 - Demand and elevation by Node. 

Node ID Base Demand (LPS) Elevation (m) 

Reservoir - 200 

1 3 180 

2 – DMA1 3 160 

3 3 140 

4 3 120 

5 – DMA2 3 100 

6 3 80 

7 2 60 

8 2 40 

9 2 20 

10 – DMA3 5 0 
 

5.3 Generic Purpose Valve 

A GPV is a fundamental element to simulate a turbine operation in EPANET. This type of valve works 

dynamically, in the sense that it changes its headloss according to the flow that runs through it and the 

respective headloss curve (Figure 20) that is associated to the valve behaviour. The headloss curve is 

the respective characteristic curve of a PAT in the EPANET model.  

GPVs do not have the capability, as a PRV, to change the headloss curve with the use of Simple 

Controls or Rule Based Controls (Rossman, 2000). For this reason, a pre-selection of the curve for a 

chosen PAT for every moment in the simulation was not possible, leaving only the possibility to change 

the network valves in every iteration of time step to have a different performance for the different flow 
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conditions. The bottleneck in this procedure is setting up the network conditions, consisting of mainly 

applying new valves in the water network.  

 

Figure 20  - PAT characteristic curve in EPANET workspace. 

5.4 Hydraulic analysis 

The hydraulic options chosen for the analyses are compiled in the table below. Especial regards should 

be taken to the definition of accuracy of 0.05. The definition relates to the proportion of changes in a 

iteration to the flow values while solving the hydraulic equation in comparison to all link flows. This was 

done because the application of multiple headloss curves, that simulate different PAT operating 

conditions, could create unstable resolution of the hydraulic equations. The instability can be caused 

by headloss curves with high derivatives or when the flow conditions are in the same region where a 

point that defines the curve in EPANET exists. For this reason, the smaller error compared with the 

usual predefined 0.01 was used. The selection of this value was done by an iterative process in cases 

where this instability occurred and later defined for the optimization process. The specific gravity, which 

is the relative density of the simulation fluid to water at 4ºC was maintained at 1. The same applies to 

the relative viscosity of the fluid in relation to the viscosity of water at 20ºC.  

Table 2 - Hydraulic analysis options. 

Flow units LPS 

Headloss Formula Hazen-Williams 

Maximum Trials 40 

Specific Gravity 1 

Relative Viscosity 1 

Accuracy 0.05 

If Unbalance Continue 

 

5.5 Hydraulic Times 

Originally, in the initial process of the work, the hydraulic simulation duration for each hydraulic 

simulation was 24 hours. Like previously noted, is not possible in this setup to change the valve 
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parameters by automatic controls. This condition dictates an increase of 24 times the duration of the 

optimization process. To avoid such an increase in the optimization duration, a decrease to only 4 hours 

was made in the hydraulic simulation duration. Since the simulation reporting time step and the 

hydraulic time step is 1 hour with the first simulation at 0:00, there is a total of 5 different time steps. 

The relevant hydraulic time definitions are shown below: 

Table 3 - Hydraulic Times definitions. 

Total Duration 4:00 

Hydraulic Time Step 1:00 

Pattern Time step 1:00 

Pattern Start Time 0:00 

Reporting Time Step 1:00 

Reporting Start Time 0:00 

 

5.6 Demand pattern 

The demand pattern was adapted to the constrains imposed by the hydraulic times, and at the same 

time applying the variability that characterises WDN and the difficulty in applying a correct PAT that is 

required to have the most acceptable behaviour during these operational variable conditions. 

Data from a demand pattern presented in Figure 21 was used as baseline to apply a similar pattern to 

this work. The data comes from mixed zones with commercial and residential consumers supplying 

more than 1 million people. The pattern was originated in an average year of monitoring in a literature 

reviewed network (Candelieri & Archetti, 2014). 

 

Figure 21 - Dimensionless demand for 24h in the WDN. 

The data from the measured demand pattern, was imported to a spreadsheet (Figure 21). A 

dimensionless pattern was created and an average of the daily demand for 5 different time steps was 

used to replicate and adapt the natural variability of the demand in just a comprised time step. The 

variability, which is essential to validate the model is, therefore, preserved. The fundamental aspect of 

evaluating the adaptation of the PATs operating characteristics to the hourly demands is maintained 

with a decreased in optimization time. 
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Figure 22 - Demand pattern for 4h (5 time steps). 

5.7 PAT characteristic curves 

The characteristic curves and the corresponding PATs used in this research come from the valves and 

pumps manufactured by KSB. The curves are already provided for pump-as-turbine mode. A library of 

7 different PATs was used as variable to the system optimization. The different characteristic curves at 

the nominal rotation speed (N = 1520 rpm) provided by the manufacture are compiled in Figure 23. The 

combination of the chosen PATs was made to ensure an evenly spread operation zone. To achieve it, 

were selected pumps both with high head and low demand, and vice versa were chosen. 

Figure 23 -Compilation of characteristic curves of different PATs. 

The characteristic curves at nominal rotation speed were exported to AutoCAD and extrapolated from 

the provided curves. The points recovered were introduced in a spreadsheet and the characteristic 

curves for 8 different rotational speeds, with an interval of 200 rpm between each curve, were 

calculated. The rotations have a range between 900 rpm and 2300 rpm. The only exception was 

Etanorm 65-160 that as a nominal speed of 1015 rpm and in this case the range is from 500 rpm to 

1800 rpm. For each point in each PAT the turbomachine affinity laws were applied, defining the H-Q 

characteristic curves and providing the behaviour on the best operating point. Also, the power curve 

was calculated, in the same way, using the affinity laws of turbomachines. 
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In the same spreadsheet, was done a preparation of the curve points to be extrapolated to the EPANET 

network file. Headloss curve files were created for each rotational speed in each PAT and, accordingly, 

were easily named (e.g. 1-2, is PAT 1 and velocity 2) to be reached when needed by the optimization 

algorithm. The corresponding curve, obtained from the use of turbomachines affinity laws for the 

Etanorm 65-160, are shown in Figure 24.  

 

Figure 24 – Characteristic curves of H-Q, power, and efficiency of Etanorm 65-100 at different rotational speeds. 

The curves applied on EPANET model have a constant line of zero headloss applied between flow zero 

and the start of the actual H-Q curve of the PAT. The same constant line with zero headloss is applied 

in the end of the H-Q curve as represented in Figure 20. This decision works as an automatic penalty 

in the optimization algorithm. In this way, it is more likely for a PAT to be correctly applied and to be 

working in the desired conditions without additional constrains to the system.  
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5.8 Optimization process  

5.8.1 Methodology 

The components of the GA process had to be adapted to the optimization and interaction with the 

hydraulic solver. Two main components in the process should be noted: (i) the genetic optimization 

algorithm and (ii) the hydraulic network edition and simulation. 

For an efficient interaction between the two simulation tools, the network morphology of each solution 

was comprised in one common matrix as displayed in Figure 25. For each level, in the (z) axis of the 

matrix, corresponds a chromosome of each solution, meaning that the size of the matrix in this 

dimension depends on the number of elements in the initial population decided by the user. Inside of 

each (z) plane there is a line in the (y) axis for each link of the network and every column, in the (x) 

axis, is responsible for a characteristic related to the possible PAT installed in the link, whether there is 

in reality a PAT to be installed (On/Off) with the correspondent model and speeds in ER mode.  

 

Figure 25 - Population Matrix. 

By having every element of the population comprised in one matrix with a simple nomination of the 

characteristics, such as the binary or index connotation of the features to be stated in the network, not 

only it becomes easy to process the hydraulic network but allows for compatibility with simple evolution 

methods of mutation and crossover. A solution that was processed by the optimization algorithm is 

represented in Table 4. This solution was removed in the early stages of the optimization. Knowing that 

the mutation operator changes the values of the first column for 0 or 1, it is noticeable the already 

present effect of the mutation operator in the first column with the presence of already mutated values. 
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Table 4 - Example of chromosome/solution used in the optimization. 

 

Hydraulic simultation and network edition  

Input from 

the GA 

process: 

 

Population Matrix 

  

 
   

 For every 

Chromosome/Solution: 

  

  For every time step:  

   

 

 

  Valve Implementation: 

Each link is evaluated for each PAT installation. The 

correspondent characteristics are implemented for the 

given time step. 

 

 

    

  Results: 

The results are comprised in a similar matrix format as 

the population. A pressure matrix records the node 

pressure for each chromosome and time step. A similar 

flow matrix for the PAT links is designed. 

 

    

Output from Hydraulic Simulation to GA 

process:  

Flow and nodal pressure matrix. 

   

Figure 26 – Flow chart for the hydraulic Simulation and Network edition diagram. 

  Rotational speed at time step: 

PAT On/Off PAT model 1 2 3 4 5 

1,000 1 4 7 6 1 8 

0,935 6 7 4 1 1 6 

0,241 1 2 6 2 2 8 

1,000 5 2 8 2 7 1 

0,227 6 7 1 8 8 7 

0,523 1 4 1 5 5 4 

0,238 2 1 3 1 8 6 

1,000 6 6 1 1 7 2 

0,962 1 6 6 8 7 5 

1,000 4 4 7 8 7 7 
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As previously stated, the procedure bottleneck is the interface between the optimization procedure in 

MATLAB and the hydraulic simulation of the water network in EPANET. The GPV implementation and 

corresponding characteristics are the most critical step in the process, not only because is repeated 

multiple times (time steps*number of valves per generation*number of generations), for every time step 

and PAT (in form of valve), but also because it is dependent on the size of the network and the velocity 

of the interface toolkit. This step in presented in Figure 26 as a diagram for a clearer understanding of 

the work cycle. 

Start 
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Evolutionary  

Operators: 
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Crowding Distance: 
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        Graphic Representation 

of the Progression 

Figure 27 - General workflow of the GA in the case study. 
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Figure 27 describes the general methodology of the routines used in the present study. It is important 

to note that every major variable that impacts the system performance in the short term was 

incorporated in this optimization process. Meaning that the GA must deal with a complete simulation 

that takes into consideration not only a demand pattern but also a multitude of options in the PAT library. 

With this procedure a higher range of possible solutions exists and the difficulty to achieve good 

solutions is also inherently higher. As previously described the goal of this research is to analyse the 

entire network and its characteristics in only one robust system. The simulations were made with an 

AMD Ryzen 7 3750H (2.3Ghz) CPU where only one core was dedicated to the processing.  

It is important to note that the apparent simplicity of this network is not representative of the level of 

possible solutions and combination of parameters that may exist in this problem. Taking in account the 

number of solutions permutations possible with the chromosome/solution matrix, the multiple PATs and 

operating conditions available and the time steps, the total number of possible solutions is 4,12.1056.  

The space of solutions to be analysed, comes from a non-continuous function. A GA approach to a 

continuous function, where the changes in inputs can be smooth, offering a constant and gradual 

progression of results. In this kind of approach to a non-continuous solution space the resulting 

convergence is predicted to behave in a breakthrough-to-breakthrough evolution. The true pareto front 

is not made of continuous points, and each pareto solution may be very distinct from each other not 

only in terms of the fitness function output, but also in the true characteristics of the chromosomes. A 

geometrically imperfect pareto front is thereby expected in this multivariable non-continuous solution 

space. This means that when observing the pareto front in a graphical representation one could 

suppose that there would exist missing solutions in a certain region due to the distance between results, 

the pareto front general appearance and due to the lack of solutions in a certain space/region of the 

graphical representation. There is the possibility that the pareto front with those apparent defects could 

be a good approximation to the true pareto front due to the discontinuity of the true values.  

 

5.8.2 Inputs and setup of optimization options 

The inputs required at the beginning of the optimization cycle dictate the evolution of the system and at 

some level part of the system constrains. The elements that comprise the input data are as follow: 

• Crossover Ratio 

• Mutation Ratio 

• Population Size 

• Total number of generations 

• Percentage of high-pressure tolerable region 

• Reference of ideal pressure 

• Reference of high pressure 
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• Υ – Probability of not applying a PAT 

Like previously stated in the methodology and components, the Crossover and Mutation are both critical 

elements of a GA optimization. Both depend on a user input that defines them respectively by the 

Crossover and the Mutation ratios The ratios are the equivalent probability of a certain characteristic in 

the chromosome of the solution to be modified when under the evolutionary processes to find a better 

suited individual. During the Crossover operations, the respective ratio was used to define the actual 

solutions that should take part in the exchange of genetic material to create two new chromosomes. In 

the mutation operator, the ratio was used freely. Meaning that a random number is associated, 

coordinate wise, to every gene in every chromosome of the solutions to adapt. This number was created 

randomly. If it were inside the range of probability defined by the ratio a mutation would occur. The 

mutation operator intervenes only after the crossover operator. 

The effects of different ratios in the evolutionary operators is the topic of multiple studies (Hong et al., 

2000; Eiben et al., 2007; Hassanat A et al.; 2019) The different methods used to apply both evolutionary 

operators and the corresponding ratios can change the results and the convergence of the optimization. 

Usually, with the use of static ratios, meaning that remain the same during the whole duration of the 

optimization, the values of the mutation probability are very low when compared with the crossover 

probability. Mutation exists mainly, not entirely, to guarantee the discovery of new regions of the solution 

space and crossover to optimise the individual solution in each local maximum.  

In the start of any GA, there must exist an initial population that is randomly generated, in many cases 

(e.g. as in the case of function optimization) it does not require special attention to the randomly 

generated variables. In this case, there is a physical implementation of a turbine, and it could be relevant 

to change the initial concentration of PAT, from the analysis’s perspective. A variable defined as 𝛾 was 

included in the input data and defines the probability of not having an installed PAT at a given link. In 

the creation of the new population if the randomly created variable exceeds 𝛾, then a PAT is considered 

active in that link. The population size and the total number of generations are also defined. The 

correlation between these two parameters is also difficult to correctly determine. The traditional 

approach is to maintain a constant population, but studies have concluded that for small searching 

spaces a small population is more effective, being the opposite true to find solutions in large search 

areas (Rajakumar & George, 2013) (Abdelaziz, 2016). The approach used in this research was to 

maintain the traditional constant population. 

Directly related with the hydraulic conditions of the network, objectives and constrains must be added 

as well. The primary input is the reference for the desired objective pressure to be present in all nodes 

to ensure a correct supply to the end consumer. The maximum desired pressure value was also 

incorporated in the input data. This value aims to create a region within it is allowed to have the flexibility 

to change the network characteristics in such a way that the power generation has more versatility if 

possible (e.g. if it makes more sense for the overall objectives to build pressure for in a line to achieve 

better rentability with a bigger PAT capacity). To allow for a greater focus on energy production, and at 
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the same time stimulate a natural equilibrium in the overall pressure in the nodes, a maximum region 

with pressure above the reference of maximum desired pressure was created. Similar to every 

characteristic in the input data, the absolute value used may produce different results and the 

comparison between each other by running multiple simulations is always recommended. The value of 

35% for the region of high pressure was used in the optimization process. When a certain solution 

exceeds this region of pressure a penalization is imposed in the pressure fitness values.  

5.8.3 PAT curves compatibility with operating conditions 

The PAT library created for this research, is purposely not selected for an in depth compatibility with 

the conditions present in the network. As previously said, the combination of the chosen PATs was 

made to ensure an evenly spread operation zone, both PATs with high head and low demand, and vice 

versa were chosen. Even if certain models are completely incompatible with the conditions, it would be 

against the ideology of robustness that characterizes the GA to pre-select only the solutions that can 

offer an interesting performance. In this line of thought, Figure 28 overlays the multiple characteristic 

curves of the PAT Library with the flow present in each stretch. The flows that are widely available are 

represented in green. The red regions represent flows that are not available in the network.  

 

Figure 28 - Pat Library at 1520 rpm overlaid with initial hydraulic flow conditions in the network. 

By observing Figure 28, it is possible to previously conclude, even though the figure only shows the 

standard rotational speeds of the PATs in a direct interpretation, that the majority of low flow – high 

head PATs are the ones that mostly adapt to the majority of hydraulic conditions .Although, flow wise, 

this type of turbines have a great compatibility, they can offer higher headloss than recommended in 

the network. Contrary to the previous group, in the high flow–low head PATs, may be less compatible 

flow wise but with a higher compatibility in the headloss that is induced in the network. Etanorm 100 – 
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400 has a very low area of influence in the characteristics offered by the network and therefore in less 

likely to be used by the optimization in a solution. The other two options of low head PAT, in comparison 

to the later one, are more suited but also not ideal since they cannot fulfil every region of the imposed 

hydraulic conditions. However, the Etanorm 65-160 could offer a great solution only in a high rotational 

speed achieving thereby the desired headloss for the links of the case study system, but at the same 

time has a less desirable ability of controlling the pressures in the network in low demand hours. This 

difficulty in finding the correct system solution, in such a simple network, shows the complexity of 

tackling such a problem in a larger scale. Beforehand, it is possible to predict that the evolution of the 

pareto front will converge more likely in solutions more dependent on high head PATs, based on the 

above approach of overlaying the characteristic curves and flow availability the evolutionary algorithm 

should have a tendency to use on one hand, since there are more types of high head PATs to choose 

from that can be suited to the system. In these cases, it is expected that, to maintain the pressure inside 

the inferior parameters of the network, it should have high pressure build up zones to have then a PAT 

installed that would remove the high pressure accumulated. In the other hand, a solution based on a 

gradual use of low head PATs is also expected to be applied since it could be a gradual use of this 

turbomachines in many links that would maintain adequate levels of pressure and a gradual 

accumulation of power generation in each PAT.  

5.9 Optimization Results 

During the optimization, the pareto front results for each generation and their conversion were 

registered and presented in the MATLAB interface as shown in Figure 29.  

Figure 29 - Pareto Front representation and the corresponding results for each generation. a) Generated power 

(kW); b) Rentability (Cost/kW) c) Pressure Fitness d) Final representation of every solution in the pareto front.  

a) b) 

c) 
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In each generation of the GA convergence, the pareto front for that generation was saved and each 

solution represented as one circle with the corresponding fitness values associated. For Figure 29 a), 

b) and c) only the better results at the time of the respective generation were selected. Solutions that 

remained dominant for multiple generations create a line made from constant points of the same 

pressure fitness. When a solution is no longer present in the next generation in the graph, it means it 

was surpassed by another solution created with the evolutionary operators.  

In Figure 29 a) the generated power (kW) for each pareto front solution in a certain generation is 

presented. The fitness function results that represent the cost per energy unit of each solution and the 

pressure fitness results are represented in the same way in Figure 29 b) and c) respectively. In Figure 

29 c), the current pareto front for each generation was presented in a 3D space and updated for each 

generation of the GA, allowing for an easy interpretation of possible relations between solutions and 

fitness functions. With no previous interaction, by the reader, with the values in a dynamic graph it is 

difficult to visualise in this 2D format the shape of the pareto front scatter of point, therefore, reference 

lines were drawn to help visualise the tendencies of the pareto front final shape in Figure 30. 

With the referred processing power, the analysed optimization took approximately 390 hours, which 

correspond to 16.25 full days, to achieve the results in Figure 29.  

5.9.1 Evolution and convergence 

In Figure 29, some observations on the convergence of the pareto front can be made regarding the 

predictability of the results: 

Previously in the optimization process, the possibility of having a breakthrough-to-breakthrough 

optimization was proposed due to the non-continuity of the solution space. This phenomenon was 

indeed observed in the convergence of the solutions. It is clear in all the 2D figures (Figure 29 a); b); 

c)) that it took place according to that scenario, taking, at times, multiple generations of the GA without 

achieving a breakthrough. This was clearer after the initial convergence, where the effect of the 

crossover operator was probably less effective due to the convergence of the pareto front. Thereby, the 

breakthrough relied more in the use of the mutation operator to introduce the required variability to the 

new chromosomes in the population pool.  

A rapid convergence took place in the initial generations of the optimization, in accordance with the 

convergence that it is also reported in the studies regarding the different GAs method and its application 

to different mathematical problems that was presented previously in 3.1 (concept and evolution of GAs) 

This fast convergence is justified by the high initial variability of the solution which forces better results 

provided by the intersection of this genetic material in the solution with the use of the Crossover 

Operator. Simultaneously, a hard approach to the limits of the search space could also have an 

influence in this original convergence. In 4.4 (constraints and limits), it was specified that the tolerance 

to low pressure in the nodes, would be null, meaning that in the initial population the majority of the 

solutions didn’t had a competitive ranking since it was considered to be out of bounds. Therefore, the 
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reproduction operator ended with few solutions, having those solutions more probability to produce 

offspring. With more chances of mutation and crossover in the children’s pool adding to the already 

high probability of an alteration to the solution to create a better one, since very few good solutions had 

already been discovered that could provide a competitive dominance. 

The ER, in the first interactions had also a very small adaptability, only later in the phase were the 

solutions in the pareto front became more stable the regulation of the appropriate rotational speed for 

each PAT and each hour of the day started to have a permanent effect. Before this phase, a regulation 

in rotational speed could be very quickly surpassed by a substitution in PAT model or simply the 

domination of other solution.  

 

Figure 30 - Pareto front general shape emphasised in different perspectives a) and b). 

5.9.2 Analyses of the results  

Regarding the previous observations, there are conclusions to take from the relations between fitness 

parameters and their convergence:  

• A clear relation that could be previously expected is that with higher power generation the lower 

the fitness pressure is. It is a simple and straight forward condition, that although simple, is a 

testimony of the correct behaviour of the optimization algorithm. Logically the reduction of 

pressure is equivalent to the reduction of potential energy in the water network. By removing 

that excess potential energy, even in a scenario that the PATs would be working in undesirable 

efficiency conditions the energy recovered would have the tendency to follow that inverse route. 

 

            Figure 31 - Relation between pressure fitness and power generated. 
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• Another relation between solutions that also is presented by the pareto front is the higher 

rentability, or higher cost, that comes from a better pressure regulation in the water network. 

By analysing the recovered data, the solutions that have better pressure regulation have 

followed the logical route of applying more small power PATs in more links of the network to 

create less accumulation of back pressure. Since the rentability fitness function comes from a 

survey of multiple PATs, as detailed in (4.5 - Fitness Function – Cost/Payback), and the function 

used provides higher cost for low power installations the result is an inevitable reduction in the 

rentability potential.  

 

 

• The rentability of the solutions in the pareto front is also lower, meaning a higher installation 

cost per energy unit the higher the power generation is represented by the linear regression in 

Figure 32 a). This comes in agreement with the previous point. 

5.9.3 Potential influence of modifications in the results 

The generations, in Figure 29, that remain in general the same, waiting for the inherent probability 

associated to this optimization method to act and generate a better solution for a faster convergence 

create the question whether an adaptive mutation and crossover ratios could have an impact in the 

convergence of resulting pareto front. By using adaptive mutations ratios, either a predefined 

transformation according to the number of generations or the continuous adaptation to the modifications 

in the pareto front, one could create an incentive by improving the mutation ratio when the pareto front 

starts to stabilize. Hence, the variability is forced to be induced in the pareto front and could accelerate 

either the discovery of new regions in the solutions space or could improve the tuning of the ER 

definitions for each time step.  

The no tolerance approach described previously in 5.8.1 - evolution and convergence and in 4.4- 

Constraints and Limits may have an impact, not only in the probability of the first generations, but more 

importantly in the approach to the solutions make towards the optimization. In the approach used in this 

research the convergence only can occur from the high-pressure region to the low-pressure, not 

allowing for a convergence from both sides of the spectrum, and the low-pressure solutions are 

considered immediately out of bounds and do not have a reproductive chance. In the case of allowing 
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the existence of solutions that are outside the possible solution space of the water network because of 

the low pressures in the nodes, there is the possibility that it would create more variability in the pool of 

solutions that have reproductive possibilities and that could in future generations evolve, in the correct 

direction, and became a completely viable solution in the pareto front. An approach to these results with 

a standard penalization, like when it is applied for the case of a too big high-pressure region may not 

be enough, since it may offer to much equality between solutions. In one case the solutions are actual 

viable solutions, and in the other where there are negative pressures in the water network are not 

physically possible or adequate to the supply of water. It is possible, that an approach using more 

criteria to the evaluation of solutions, giving them the option of reproduction but not allowing for an 

official first rank in the pareto front could be a way of opening a window to more variability in future 

works.  

A critical aspect that was already justified in item 5.0, is the small population size and equally small 

number of generations used in this research due to the performance of the algorithm running in 

MATLAB and using the EPANET-MATLAB Toolkit. A critical aspect of optimizing a pareto front in a big 

search space, as this study and especially in the case of a full-scale water network, is the size of the 

population. A central component in the concept of GA is the mass testing, competition, and viability to 

reproduce at large scale. Bigger populations create more probability in each generation of finding a new 

offspring that could be the successor of some individual in the current pareto front. The children pool 

only has half the size of the original population, meaning that if a certain pareto front achieves a similar 

size, the reproductive probability although high in comparison with non pareto solutions, loses its 

influence leaving pareto solutions, individually, with very little reproductive power since the slots 

available for reproduction in the children’s poll are restricted. By having a very large population in 

comparison to the pareto front, the solution has multiple opportunities in just one generation to suffer 

the effects of the evolutionary operators and thereby have more chances of creating solutions (e.g. in 

the worst case scenario of having the same number of elements in the pareto front as the size of children 

pool, each solution would only have one chance in each generation of creating viable offspring). In the 

adopted population in this study, where it was necessary to run the optimization with the available 

computation performance, the pareto front gained dimensions that may have impaired the reproductive 

effort. This may also be a cause in cases where the convergence did not develop for multiple 

generations at a time. In future works, a more efficient system must be adopted to have the possibility 

of reducing the lack of reproductive ability with the use of large populations and therefore to converge 

faster in time and number of generations.  

5.9.4 Optimal convergence of the solutions 

A reference to evaluate the convergence of the optimization in this research is based on the pressure 

fitness function, since it is the only quantifiable fitness function due to being unknown the true pareto 

front for studied system. 
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The arbitrary average difference of 10 m w.c. in every node was used as a very good reference of 

pressure management and with these values of pressure it was obtained a final value of pressure fitness 

to compare the results. Other reference values were also obtained for 20, and 35 m w.c.. If the pareto 

front achieves the region of no penalization, an “artificial” drop in the pressure fitness value would 

happen in the scale of 100X inferior. The penalization for excess nodes with high-pressure above the 

desired value in the water system consists on the multiplication of the pressure fitness function result 

by a penalization constant, for this study is 100. In these reference values the penalization is added to 

maintain the values in the same scale for a comparison. 

Table 5 - Simulation of different pressure results and correspondent pressure fitness function results. 

Excess Pressure/node (m w.c.) 10 20 35 

Pressure Fitness Function 0,6 1.9 5.7 

 

In Table 5, the side-by-side comparison of the values created by the fitness function show the natural 

penalization of the effect of error amplification that the square factor of the fitness function creates. In 

comparison with best result optimized (pressure wise) with a pressure fitness of 16.62 it is clear that 

more work has to be done in calibrating the procedure used but simultaneously demonstrates that it is 

a viable system.  

Although the results appear to be a long way from the references of Table 5, one must not discard the 

possibility that due to the network profile, the demand pattern and the PAT options available the values 

presented as reference could be very difficult to achieve or even can be out of the solution space being 

therefore impossible to achieve.  

 

Figure 33 - Pressure profile in the network for each time step. 

The profile representation of the water network solution that achieved the lowest fitness pressure result 

is presented in Figure 33. The pressure profile for every time period is represented. The range of optimal 
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pressure is represented in the graph as a red line for the upper limit, the reference of high pressure, 

and the green line for the lower limit which is the reference of minimum pressure desirable in the water 

network. Table 6 refers to the speed of the PATs referred in the pressure profile of Figure 33. 

 

 

 

Figure 34 - Pressure profile in the refined network for each time step. 

A refinement post optimization of the PAT characteristics was executed for the solution with the best 

pressure fitness. The pressure profile for the refined solution for each given time step is represented in 

Figure 34. Small enhancements were made in the PAT rotational speeds. The GA optimization seeks 

the overall best set of solutions to the water network, therefore, in the final stretch of optimization where 

the mutation operator is more important, the duration of the conversion may be slower. A fast refinement 

of the already simplified solution after the optimization process can improve the results that may take 

multiple generations to improve with the GA. Table 7 details the speeds referent to the pressure profile 

of Figure 34. 

 

  Rotational speed (RPM) at time: 

 Model Time 0:00 Time 01:00 Time 02:00 Time 03:00 Time 04:00 

PAT – 1 80-200 1700 1100 900 1700 1500 

PAT – 2 80-200 1900 2100 1900 900 1900 

PAT – 3 80-200 1900 1100 1300 1100 1100 

PAT – 4 40-315 2100 2300 1300 1300 1100 

PAT - 5 32-200 1500 2100 1300 1100 1900 

Table 6 - Rotational speed of the optimized PATs at each given time period referent to Figure 33. 

  Rotational speed (RPM) at time: 

 Model Time 0:00 Time 01:00 Time 02:00 Time 03:00 Time 04:00 

PAT – 1 80-200 1300 1900 2100 1900 1900 

PAT – 2 80-200 1900 1100 1300 1300 1300 

PAT – 3 80-200 900 1100 1500 1300 1100 

PAT – 4 40-315 900 1500 1700 1500 1100 

PAT - 5 32-200 900 1500 1700 1500 1100 

Table 7 - Rotational speed of the optimized PATs at each given time period referent to Figure 34. 
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By adding the integral of the pressure curve of each time step in the “no intervention” scenario, in the 

optimized profile of the water network and in the profile refined after the optimization a comparison of 

the results was made. The “no intervention” case is the benchmark with 100% of the network pressure. 

The pressure results provided solely by the optimization algorithm provide a reduction to 78% in the 

network pressure. After the fast refinement of PAT speeds of the optimization results there is a reduction 

to a noticeable 59% of the original pressure in the water network. A clear improvement was made 

regarding the original pressure conditions.  
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6 Conclusions 

6.1 Conclusions of the developed research 

The control of water scarcity must be made in both ends of the spectrum, controlling and reducing the 

water exploitation by effectively reducing the losses in transport and at the same time tackling the 

energy dependent system that is the water supply industry by reducing the need for outsourcing energy 

that could increment by itself the effects of climate change. The water supply networks and its demands 

are ever more complex, and the correct management follows the same path. 

Multiple methods exist for an adequate control of the excess pressure in water networks. Genetic 

algorithms have an already proven capability of being able to offer solutions of pressure regulation in 

water networks by using PRVs. The use of PATs with its multiple regulation methods are also 

compatible with the concept of optimization introduced by the GAs. The same compatibility applies to 

the size of the solution space in this type of problem. Multiple methods and alternatives to the GA 

optimization operators can be studied to enhance the system capabilities.  

The use of a pareto front optimization is an excellent method to avoid unnecessary bias by the user of 

the system and allows it to have a stronger decision power. Avoids an inevitable parametrization of 

weighted objectives and allows for an optimization of solutions that otherwise could be ignored. 

The use of an integral approach, like the one used in this research, to optimize solutions that uses PATs 

as the base element in a multi-objective problem show a feasible option that could allow for an efficient 

optimization of large water networks. The fitness functions and restrict constrains showed a good 

convergence of the solutions, having nevertheless room for improvement by allowing solutions that are 

in the negative pressure region to reproduce in order to improve the variability of the solutions in the 

pareto front and possibly the speed of convergence.  

The method of combining all the information in the proposed population matrix proved to be a robust 

option. Allowing for a fast manipulation of the population characteristics and a flawless interaction 

between each step of the optimization. 

The use of all fitness functions developed in this research showed an effective comparison between 

solutions and allowed for a competitive evolution of the pareto front. The velocity of convergence 

diminished during the simulation. The lack of reproductive ability of the solutions due to the size of the 

population or the achievement of a very optimized pareto front by the GA could be a cause for this 

observation. 

The optimization results demonstrate a clear improvement in the pressure conditions. Besides offering 

adequate solutions that respect the limits of what is the acceptable solution space, it offers a direct 

improvement after the optimization to only 78% of the original pressure. After a refining of the rotational 

velocities in the solution, pressure levels of 59% the original pressure were achieved. With the use of 
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PATs better adapted to the conditions present in the water network, it is possible to achieve even better 

results. 

The methodology used in this research shows effectiveness in the convergence of the pareto front and 

its adaptation using the evolutionary operators. The use of EPANET-MATLAB Toolkit, despite being a 

good solution to analyse data from water networks using a powerful mathematical software like 

MATLAB, is not adequate in performance capabilities to the number of network editions and simulations 

needed to have results closer to the true pareto and adequate populations and generations in the 

optimization. 

6.2 Future works 

The procedure used in this research could be improved in several aspects on future works, many of 

them already referred but, nevertheless, are here compiled. 

The use of a different system to achieve the performance needed to execute an effective GA 

optimization is essential for a better development, and study, of the methodology presented. The 

required performance was not reached in this research with the use of EPANET-MATLAB Toolkit. The 

approach may consist in using an integrated system that deals directly with the hydraulic equations and 

respective matrix in the same language, without editing a network file. This fast approach solves the 

lack of generations and population number, ensuring the so important diversity, the possibility to 

evaluate the optimization in more complex networks and the use of more variables, such as, the 

complete time-steps and bigger PAT libraries. The use of more detailed cost fitness function can also 

be of great interest, ensured by also having a cost library for each individual PAT, civil works and 

components of the electrical regulation. 

Further works should be made in the calibration of the evolutionary ratios and rigidity of the solution 

space limits to enhance the convergence capabilities. Simultaneously, it could be of interest to extend 

the optimization to solutions that not only compete for viability in the short run, but also for a complete 

life cycle of the solution. Achieving more simulations, with different regulations and more yearly 

demands that are predicted to happen in the future.  
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Appendix I – Optimization Algorithm  

Main 

 
clear; 

clc; 

RCross = 0.5; 

RMut = 0.15; 

RMutPosition = 0.2; 

pop = 80; 

gama = 0.8; 

Generations = 200; 

RefPressure = 15; 

HighPressureZone = 0.35; 

RefMaxPressure = 35; 

run('C:\Users\Tiago Baptista\Desktop\Pasta de Teste EPANET\EPANET-Matlab-'... 

    'Toolkit-2.2.0-beta.3\EPANET-Matlab-Toolkit-2.2.0-beta.3\epanet_matlab'... 

    '_toolkit\64bit\start_toolkit.m'); 

d = epanet ('Conceito1Testagem.inp','bin'); 

d.LibEPANETpath = 'C:\Users\Tiago Baptista\Desktop\Pasta de Teste EPANET'... 

    '\EPANET-Matlab-Toolkit-2.2.0-beta.3\EPANET-Matlab-Toolkit-2.2.0-beta.3\'... 

    'epanet_matlab_toolkit\64bit\epanet2' 

LinkFlow = d.getBinComputedLinkFlow; 

NodePressure = d.getBinComputedNodePressure; 

lig = d.getBinLinksInfo; 

ned = d.getBinNodesInfo; 

from = lig.BinLinkFromNode; 

to = lig.BinLinkToNode; 

ID = lig.BinLinkNameID; 

P = lig.BinLinkCount; 

Diam  =lig.BinLinkDiameters; 

NodeCount = ned.BinNodeCount; 

MeanLinkFlow = abs(mean(LinkFlow)); 

MeanNodePressure = abs(mean(NodePressure)); 

TNODES = FINDTERMINAL2(from,to,P); 

filename = 'CriticalConceito.mat'; 

save(filename); 

[LinkCV, HeadCV] = CoefVariation(LinkFlow, P, NodePressure, ned, Mean... 

    LinkFlow, MeanNodePressure); 

filename = 'CVConceito.mat'; 

save(filename); 

[NlinkData, counter, NPAT, NPATsize, NlinkDataDim]= NetworkData... 

    (MeanLinkFlow,ID,from,to,Diam,P); 

[Population]=FirstPopulation(counter,NPAT, NPATsize,pop,gama); 

  

Hor = 0; 

Vert = 0; 

Gama = 0; 

Theta = 0; 

Omega = 0; 

Phi = 0; 

GenCount = 0; 

RepeatedCromIdx = []; 

%--------------------------------- 

  
  

while GenCount ~= Generations 

    GenCount = GenCount + 1 ; 

    [NodePressure,ValvePressureFromNode,ValvePressureToNode,... 

        ValveFlow, ValveCounter,ValveType]= HidraulicRun3(Population,... 

        NlinkData,NodeCount,pop, counter,NlinkDataDim, gama); 

    [PressureFitness, CromToDelete] = ObjPressure1(NodePressure,... 

        RefPressure,NodeCount,RefMaxPressure,HighPressureZone,... 

        RepeatedCromIdx,pop); 

    [TotalCostPerKW, HPowerSumAverage] = ObjRentability... 

        (ValvePressureFromNode,ValvePressureToNode,ValveFlow, pop,... 

        ValveCounter,ValveType, CromToDelete); 

    [front, obj, crom] = NONDOMINATIONSORTING ... 

        (TotalCostPerKW,HPowerSumAverage,PressureFitness, pop); 

    [crom] = CrowdingDistance(crom, front, obj); 

    [optpop,ParetoFrontIndex, optpopsize] = SelectPop... 

        (crom, TotalCostPerKW,HPowerSumAverage,PressureFitness); 

    newpop = selectOpt(optpop); 

    [PopulationTemp, PopulationMod] = JoinPopulations(newpop,... 

        optpop, Population); 

    PopulationMod = Crossover(PopulationMod, RCross); 

    PopulationMod = Mutation(PopulationMod, RMut, NPATsize, RMutPosition); 

    [Population] = JoinPopulationMod(PopulationMod, Population,... 

        PopulationTemp, newpop, optpop); 

    [Population,RepeatedCromIdx] = RepeatedCrom(Population,... 

        optpop, PopulationMod); 

  

% ----- Data for grafical representation. 

  

for i = 1 : length(ParetoFrontIndex) 

ParetoGen(i)= GenCount; 
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ParetoPower(i) = HPowerSumAverage(ParetoFrontIndex(i).Index); 

ParetoCost(i) = TotalCostPerKW(ParetoFrontIndex(i).Index); 

ParetoPressure(i) = PressureFitness(ParetoFrontIndex(i).Index); 

end 

%----------------------------------------------------- 

  

fclose('all'); 

  

    figure(1) 

    subplot(2,2,1); 

    Hor1 = GenCount + zeros(length(ParetoGen),1); 

    Vert1 = ParetoPower; 

    Hor = vertcat(Hor, Hor1) 

    Vert = horzcat(Vert, Vert1); 

    scatter(Hor,Vert); 

    xlim([0 Generations]) 

    xlabel('Generation') 

    ylabel('Generated Power') 

    linkdata on 

    drawnow; 

     

    subplot(2,2,2); 

    Gama1 = GenCount + zeros(length(ParetoGen),1); 

    Theta1 = ParetoCost; 

    Gama = vertcat(Gama,Gama1); 

    Theta = horzcat(Theta,Theta1); 

    scatter(Gama,Theta); 

    xlim([0 Generations]) 

    xlabel('Generation') 

    ylim([0 10000]) 

    ylabel('Cost/KW') 

    linkdata on 

    drawnow; 

     
     

    subplot(2,2,3) 

    Omega1 = GenCount + zeros(length(ParetoGen),1); 

    Phi1 = ParetoPressure; 

    Omega = vertcat(Omega,Omega1); 

    Phi = horzcat(Phi,Phi1); 

    scatter(Omega,Phi); 

    xlim([0 Generations]) 

    xlabel('Generation') 

    ylabel('Pressure Fitness') 

    linkdata on 

    drawnow 
     

    subplot(2,2,4) 

    scatter3(ParetoPower,ParetoCost,ParetoPressure); 

    drawnow; 

     
  

 % ---------------------------------------------------FINAL---------    

 if GenCount == 10 || GenCount == 20 || GenCount == 100 ||... 

         GenCount == 150 || GenCount == 60 

      varname = sprintf('OptPop.GenCount-%u',GenCount); 

      save(varname,'optpop'); 

 end 

 %----------------------------------------------------------    

  

    clearvars ParetoFrontIndex ParetoGen ParetoPower ParetoCost... 

        ParetoPressure; 

    clearvars optpop PressureFitness TotalCostPerKW HPowerSumAverage... 

        NodePressure; 

    clearvars NodePressure ValvePressureFromNode ValvePressureToNode... 

        ValveFlow ValveCounter; 

    clearvars PopulationTemp PopulationMod newpop; 

         

 end 

  

Hydraulic Simulation 

 
function[NodePressure,ValvePressureFromNode,ValvePressureToNode,ValveFlow... 

    , ValveCounter]=HidraulicRun(Population,NlinkData,NodeCount,pop... 

    , counter,NlinkDataDim, gama) 

  

NodePressure = zeros(25,NodeCount,pop); 

ValveCounter = zeros(pop); 

i = 0; 

  

for crom = 1 : pop 

    for h = 1 : 24 

        file  = sprintf('Conceito%d.inp',h-1); 

        d = epanet(file,'bin'); 

        d.LibEPANETpath = 'C:\Users\Tiago Baptista\Desktop\Pasta de'... 

            'Teste EPANET\EPANET-Matlab-Toolkit-2.2.0-beta.3\EPANET-Mat'... 

            'lab-Toolkit-2.2.0-beta.3\epanet_matlab_toolkit\64bit\epanet2'; 

        ValveCount = 0; 

        tic 
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    for i = 1: counter 

        show1 = [ 'Link ',num2str(i), ' de ' , num2str(counter),... 

            ' do cromossoma nº', num2str(crom), 'tempo -',num2str(h)]; 

        disp(show1); 

         

        if Population(i,1,crom) >= gama %Apply GPV% 

            d.removeBinLinkID(convertCharsToStrings(NlinkData(i,1))); 

            name = sprintf('GPV%u',i); 

            name = convertCharsToStrings(name); 

            d.addBinValveGPV(name,convertCharsToStrings(NlinkData(i,2))... 

                ,convertCharsToStrings(NlinkData(i,3)),... 

                NlinkDataDim(i,1),(Population(i,2+h,crom))); 

            ValveCount = ValveCount + 1; 

             

        end 

    end 

     

ValveCounter(crom) = ValveCount; 

% 1-ID 2-From 3-To 4-D% 

lig = d.getBinLinksInfo; 

ValvesIndex = lig.BinLinkValveIndex; 

NodePressureTemp = d.getBinComputedNodePressure; 

LinkFlowTemp = d.getBinComputedLinkFlow; 

ValveFrom = lig.BinLinkFromNode; 

ValveTo = lig.BinLinkToNode; 

ned = d.getBinNodesInfo; 

toc 

try 

    for node = 1 : NodeCount 

            NodePressure(h,node,crom) = NodePressureTemp(1,node); 

    end 

catch 

    i = i+1; 

    InvalidCrom(i)= crom; 

    for time = 1 : h 

        ValveFlow(time,1,crom) = 0; 

        ValvePressureFromNode(time,1,crom) = 0; 

        ValvePressureToNode(time,1,crom) = 0; 

    end 

    continue 

end 

  

if ValveCount == 0 

    for time = 1 : 24 

        ValveFlow(time,1,crom) = 0; 

        ValvePressureFromNode(time,1,crom) = 0; 

        ValvePressureToNode(time,1,crom) = 0; 

    end 

    continue 

end 

  

for valve = 1 : ValveCount 

    ValveFlow(h,valve,crom) = LinkFlowTemp(1,ValvesIndex(valve)); 

    FromNode= ValveFrom(ValvesIndex(valve)); 

    REFF = convertCharsToStrings(FromNode); 

    ToNode = ValveTo(ValvesIndex(valve)); 

    REFT = convertCharsToStrings(ToNode); 

    for node = 1 : NodeCount 

        aval = convertCharsToStrings(ned.BinNodeNameID{node}); 

        if strcmp(REFF, aval) 

            ValvePressureFromNode(h,valve,crom)= NodePressureTemp(1,node); 

            continue 

        end 

        if strcmp(REFT, aval) 

            ValvePressureToNode(h,valve,crom) = NodePressureTemp(1,node); 

            continue 

        end 

         

    end 

end 

end 

end 

end 

 

Fitness function – Pressure 
 

function[PressureFitness,CromToDelete] = ObjPressure1(NodePressure,... 

    RefPressure,NodeCount,RefMaxPressure,HighPressureZone,... 

    RepeatedCromIdx, pop) 

PenaltyHighPressure = 0; 

PenaltyLowPressure = zeros(pop); 

Test = sum(sum(NodePressure,1),2); 

for i = 1 : length(Test) 

    if Test(i) == 0 

        idex(i)= 0; 
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    else 

        idex(i)= 1; 

    end 

end 

Diference = NodePressure - RefPressure; 

for i = 1 : pop 

    for t = 1 : size(Diference,2) 

        for k  = 1 : size(Diference,1) 

            if Diference(k,t,i) < 0 

                PenaltyLowPressure(i) = PenaltyLowPressure(i) + 1; 

            end  

        end 

    end 

end 

PenaltyLowPressure = PenaltyLowPressure - 5;  

DiferenceSquare = (Diference.^2)*0.00001; 

total = sum(DiferenceSquare,1); 

total = sum(total,2); 

PressureFitness = (total/NodeCount); 

variable = 0; 

for t = 1 : pop 

    PenaltyHighPressure = 0; 

    for time = 1 : 5 

        for i = 1 : NodeCount 

            if Diference(time,i,t) > RefMaxPressure - RefPressure 

                variable = variable + 1; 

            end 

        end 

    end 

        variable = variable/(NodeCount*5); 

        if variable > HighPressureZone 

            PenaltyHighPressure = PenaltyHighPressure + 1; 

        end 

    if PenaltyHighPressure ~= 0 

        PressureFitness(t) = PressureFitness(t)*100; 

    end 

    if PenaltyLowPressure(t) ~= 0  

       PressureFitness(t) = PressureFitness(t)*1000*PenaltyLowPressure(t); 

    end     

end 

    t = 1; 

    Delete = 0; 

    CromToDelete = []; 

    for i = 1 : length(PressureFitness) 

        if PressureFitness(i) > 55.90 %Default original pressure. 

            PressureFitness(i) = PressureFitness(i).^10000000; 

            Delete = 1;    

        end      

        if Test(i) == 0 

            PressureFitness(i) = PressureFitness(i).^2; 

            Delete = 1; 

        elseif  ismember(i,RepeatedCromIdx) 

            PressureFitness(i) = PressureFitness(i).^1000000000000; 

            Delete = 1;   

        elseif Delete == 1 

            CromToDelete(t) = i; 

            t = t + 1; 

            Delete = 0; 

        end  

    end 

         

Test = []; 

RepeatedCromIdx = []; 

Diference = []; 

variable = 0; 

end 

Fitness function – Power and Rentability 
 

 function[TotalCostPerKW,HPowerSumAverage] = ObjRentability(Valve...  

    PressureFromNode,ValvePressureToNode,ValveFlow, pop, ValveCounter,... 

    ValveType, CromToDelete) 

g = 9.8; 

Density = 1000; %kg/m^3% 

ErrorListCounter = 0; 

load('MATRIXPOWERCURVES.mat'); 

for crom = 1: pop 

    ValveCount = ValveCounter(crom); 

   try 

         

        if ValveCount == 0 

            for time = 1 : 5 

                Delta = 0; 

                HPower(time,1,crom)= 0.01 ;% kW  

            end 

             

        else 
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            for valve = 1 : ValveCount 

                for time = 1 : 5 

                    for i = 1 : 10 

                        if i == 10 

                            HPower(time,valve,crom) = 0.01; 

                        else 

                            Fmin = MatrixPowerCurves(i,(ValveType... 

                                (valve,1+time,crom)*2)-1,ValveType... 

                                (valve,1,crom)); 

                            Fmax = MatrixPowerCurves(i+1,(ValveType... 

                                (valve,1+time,crom)*2)-1,ValveType(valve,1,crom)); 

                            Pmin = MatrixPowerCurves(i,(ValveType... 

                                (valve,1+time,crom)*2),ValveType(valve,1,crom)); 

                            Pmax = MatrixPowerCurves(i+1,(ValveType... 

                                (valve,1+time,crom)*2),ValveType(valve,1,crom)); 

                            if ValveFlow(time,valve,crom) > Fmin && ... 

                                    ValveFlow(time,valve,crom) < Fmax 

                                GPVPower  = Pmax - (((Fmax-ValveFlow... 

                                    (time,valve,crom))*(Pmax-Pmin))/(Fmax-Fmin)); 

                                HPower(time,valve,crom) = GPVPower; 

                                break 

                            end 

                        end 

                    end 

                end 

            end 

        end 

  catch 

       ErrorListCounter =  ErrorListCounter + 1; 

        for time = 1 : 5 

            Delta = 0; 

            HPower(time,1,crom)= 0.01 ; 

        end 

 end 

end 

  

  

HPowerAverage = sum(HPower,1)/5; 

HPowerSumAverage = sum(HPowerAverage,2); 

for x = 1 : length(CromToDelete) 

    HPowerSumAverage(CromToDelete(x)) =  0.01; 

end 

% Rentability Fitness Function 

    CostTemp = 0; 

    ValveCount = ValveCounter(crom); 

    Cost = []; 

    xtotal = 0; 

    try 

        for valve = 1 : ValveCount 

            x = HPowerAverage(1,valve,crom); 

            if x <= 1 

                if  x < 0.3 

                    CostTemp = 0; 

                else 

                    CostTemp = (-17512*x.^3)+(38193*x.^2)-28846*x + 9448.3; 

                end 

            end 

            if x > 1 

                CostTemp = 1320.7*x.^-0.571; 

            end 

            Cost(valve) = CostTemp*x; 

            xtotal = xtotal + x; 

        end 

        TotalCostPerKW(crom) = sum(Cost,2)/xtotal; 

        if TotalCostPerKW(crom) == 0 || xtotal == 0 

            TotalCostPerKW(crom) = 15000; 

        end 

    catch 

        x = HPowerAverage(1,1,crom); 

        if x < 0.5 

            CostTemp = 10.^10; 

        else 

            CostTemp = (-17512*x.^3)+(38193*x.^2)-28846*x + 9448.3; 

        end 

        TotalCostPerKW(crom) = CostTemp; 

    end 

    for x = 1 : length(CromToDelete) 

        TotalCostPerKW(CromToDelete(x)) =  10000; 

    end 

end 

end 

  

Non-domination sorting 
 

 function [front, obj, crom] = NONDOMINATIONSORTING (TotalCostPerKW,... 

    HPowerSumAverage,PressureFitness, pop) 

N = pop; 
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ind = repmat(struct('np',0, 'sp', []),[1,N]); 

[domMat, obj] = calcDominationMatrix(TotalCostPerKW,... 

    HPowerSumAverage,PressureFitness, pop); 

for p = 1:N-1 

    for q = p+1:N 

        if(domMat(p, q) == 1)           

            ind(q).np = ind(q).np + 1;  

            ind(p).sp = [ind(p).sp , q]; 

        elseif(domMat(p, q) == -1)     

            ind(p).np = ind(p).np + 1;  

            ind(q).sp = [ind(q).sp , p]; 

        end 

    end 

end 

front(1).f = [];     

for i = 1:N 

    if( ind(i).np == 0 )   

        crom(i).rank = 1; 

        crom(i).Index = i; 

        front(1).f = [front(1).f, i]; 

    end 

end 

fid = 1;    

while( ~isempty(front(fid).f) ) 

    Q = []; 

    for p = front(fid).f 

        for q = ind(p).sp  

            ind(q).np = ind(q).np -1;  

            if( ind(q).np == 0 ) 

                crom(q).rank = fid+1; 

                crom(q).Index = q; 

                Q = [Q, q]; 

            end 

        end 

    end 

    fid = fid + 1; 

     

    front(fid).f = Q; 

end 

front(fid) = [];  

 

Crowding Distance 
 

function crom = CrowdingDistance( crom, front, obj) 

numObj = 3;   

for fid = 1:length(front) 

    idx = front(fid).f; 

    frontPop = crom(idx);       

     

    numInd = length(idx);       

    for i = 1 : numInd 

        for t = 1 : 3; 

        objTemp(i,t) = obj(idx(i),t); 

        end 

        objTemp(i,4) = idx(i);   

    end         

    for m = 1:3 

        objTemp = sortrows(objTemp, m); 

  

        colIdx = 4; 

        crom( objTemp(1, colIdx) ).distance = Inf;          

        crom( objTemp(numInd, colIdx) ).distance = Inf;     

         

        minobj = objTemp(1, m);         

        maxobj = objTemp(numInd, m);   

        for i = 2:(numInd-1) 

            id = objTemp(i, colIdx); 

            crom(id).distance = 0; 

        end 

        for i = 2:(numInd-1) 

            id = objTemp(i, colIdx); 

            crom(id).distance = crom(id).distance + (objTemp(i+1, m) -... 

                objTemp(i-1, m)) / (maxobj - minobj);          

       end 

    end 

    clear objTemp 

    minobj = 0; 

    maxobj = 0; 

    end 

 

 

 

Selection of the best solutions 
 

  

function [optpop,ParetoFrontIndex, optpopsize] = SelectPop(crom,... 

    TotalCostPerKW,HPowerSumAverage,PressureFitness) 

optpopsize = length(crom) / 2; 
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optpop = crom(1:optpopsize);     

rankVector = vertcat(crom.rank); 

  

n = 0;    

rank = 1; 

idx = find(rankVector == rank); 

idxtest = isempty(idx); 

numInd = length(idx);  

if rank ==1 && idxtest == 1    

    ParetoFrontIndex( 1 : 1 ) = 0; 

end 

if numInd >= optpopsize 

  

     

    distance = vertcat(crom(idx).distance); 

    distance = [distance, idx]; 

    distance = flipud( sortrows( distance, 1) );       

    idxSelect  = distance( 1:optpopsize-n, 2);           

    optpop(n+1 : optpopsize) = crom(idxSelect); 

    ParetoFrontIndex( n+1 : optpopsize ) = crom(idxSelect); 

     

else 

       

while( n + numInd <= optpopsize ) 

    optpop( n+1 : n+numInd ) = crom( idx ); 

     

    if rank == 1 

        ParetoFrontIndex( n+1 : n+numInd ) = crom( idx ); 

    end 

        n = n + numInd; 

        rank = rank + 1; 

        idx = find(rankVector == rank); 

        numInd = length(idx); 

end 

if( n < optpopsize ) 

     

    distance = vertcat(crom(idx).distance); 

    distance = [distance, idx]; 

    distance = flipud( sortrows( distance, 1) );       

    idxSelect  = distance( 1:optpopsize-n, 2);         

    optpop(n+1 : optpopsize) = crom(idxSelect); 

end 

  

end 

end 

 

function newpop = selectOpt(optpop) 

popsize = length(optpop); 

pool = zeros(1, popsize); 

count = 1; 

for x = 1 : popsize   

    d = optpop(x).rank 

    if d == 1 

        prob = 3; 

    elseif d == 2 

        prob = 2; 

    elseif d > 2 

        prob = 1; 

    end 

    for y = 1 : prob  

        ProbPool(count) = x; 

        count = count + 1; 

    end 

end 

ProbPoolSize = count - 1; 

randnum = randi((count-1), [1, 2 * popsize]); 

  

j = 1; 

for i = 1:2:(2*popsize) 

    p1 = randnum(i); 

    p2 = randnum(i+1); 

    result = crowdingComp( optpop(ProbPool(p1)), optpop(ProbPool(p2)));     

    if(result == 1) 

        pool(j) = (ProbPool(p1)); 

    else 

        pool(j) = (ProbPool(p2)); 

    end 

     

    j = j + 1; 

end 

newpop = optpop(pool); 

end 

 

 

function [PopulationTemp, PopulationMod] = JoinPopulations(newpop,... 

    optpop, Population) 

  

for i = 1 : length(newpop) 
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        PopulationTemp(:,:,i) = Population(:,:,optpop(i).Index); 

        b = length(optpop) + i; 

        PopulationTemp(:,:,b) = Population(:,:,newpop(i).Index); 

        PopulationMod(:,:,i) = Population(:,:,newpop(i).Index); 

end 

end 

 

Crossover Operator 
        

function PopulationMod = Crossover(PopulationMod, RCross) 

c = size(PopulationMod,3); 

for i = 1 : c 

CrossVector(i) = rand(); 

end 

t = 1; 

CrossParentVector = []; 

for i = 1 : c 

    rest =  rem(size(CrossParentVector,2),2); 

    if i ~= (c) 

        if CrossVector(i) < RCross 

            CrossParentVector(t) = i; 

            t = t + 1; 

        end 

    end     

    if i == (c) 

        if rest == 0 

            break 

        end 

        if isempty(CrossParentVector) 

            break 

        else 

            CrossParentVector(t) = i;  

        end 

    end    

end 

  

for i = 1 : 2 : length(CrossParentVector) 

    Parent1 = CrossParentVector(i); 

    Parent2 = CrossParentVector(i+1); 

    finish  = round(rand()*size(PopulationMod,1)); 

    start = round(rand()*(size(PopulationMod,1)-finish));   

    Nvar  = finish - start; 

    for xcoord = 1 : Nvar         

    tocopy1(1,:) = PopulationMod(start + xcoord,:, Parent1); 

    tocopy2(1,:) = PopulationMod(start + xcoord,:, Parent2); 

    PopulationMod(start + xcoord,: , Parent1) = tocopy2(1,:); 

    PopulationMod(start + xcoord,: , Parent2) = tocopy1(1,:); 

     

    end 

end 

end 

     

Mutation Operator 
   

function PopulationMod = Mutation(PopulationMod, RMut, NPATsize, RMutPosition) 

c = size(PopulationMod,1); 

e = size(PopulationMod,2); 

d = size(PopulationMod,3); 

Mutation1VectorProb = zeros(c,d); 

for z  = 1 : d  

    for i = 1 : c  

        for x = 1 : e 

            Mutation1VectorProb(i,x) = rand(); 

        end 

    end 

    for i = 1 : c 

        if   Mutation1VectorProb(i,1) < RMutPosition 

            if PopulationMod(i,1,z) == 1 

                PopulationMod(i,1,z) = 0; 

            else 

                PopulationMod(i,1,z) = 1; 

            end 

        end 

        if Mutation1VectorProb(i,2) < RMutPosition 

            PopulationMod(i,2,z) = round(rand()*NPATsize); 

        end 

        for x = 1 : e 

            if x == 1 || x == 2    

            else 

                Mutation1VectorProb(i,x) < RMut 

                PopulationMod(i,x,z) = ceil(rand()*8); 

            end  

        end 

    end 

end 

clear  Mutation1Vector; 
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end 

  

     

function[Population,RepeatedCromIdx] = RepeatedCrom(Population,... 

    optpop, PopulationMod) 

  

b = length(optpop); 

d = size(PopulationMod,3); 

c = 1;  

RepeatedCromIdx = []; 

  

for i = 1 : d 

    

    for u = 1+i : d 

         

        if Population(:,:,i) == Population(:,:,u) 

            t = ismember(u,RepeatedCromIdx); 

            if t == 0 

            RepeatedCromIdx(c) = u; 

            c = c + 1; 

        end 

    end 

end 

end 
 

 


